
Deploying Metaheuristics
for Global Optimization

M. Davarynejad

.

Deploying Metaheuristics
for Global Optimization

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 18 juni 2014 om 15:00 uur

door Mohsen Davarynejad

Master of Science in Electrical Engineering

Ferdowsi University of Mashhad, Iran

geboren te Sary, Iran.

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr.ir. J. van den Berg

Copromotor: Dr.ir. J.L.M. Vrancken

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof.dr.ir. J. van den Berg Technische Universiteit Delft, promotor

Dr.ir. J.L.M. Vrancken Technische Universiteit Delft, copromotor

Prof.dr. D.E. Goldberg University of Illinois at Urbana-Champaign, USA

Prof.dr.ir C.W. Oosterlee Centrum voor Wiskunde en Informatica (CWI)

Prof.dr.ir U. Kaymak Eindhoven University of Technology

Prof.dr.ir. J.N. Kok Leiden University

Prof.dr.ir. C. Vuik Technische Universiteit Delft

Prof.dr.ir M. Reinders Technische Universiteit Delft, reservelid

The research described in this thesis received funding from the European Communitys Sev-

enth Framework Programme within the “Control for Coordination of Distributed Systems”

(Con4Coord - FP7/2007-2013 under grant agreement no. INFSO-ICT-223844).

Published and distributed by: M. Davarynejad

WWW: http://davarynejad.com/Mohsen/

Cover design: Ehsan Davarynejad, WWW: http://davarynejad.com/Ehsan/

ISBN 978-90-5584-173-8

Keywords: metaheuristics, fitness approximation, fuzzy granulation, simulated big bounce,

center-seeking bias, initialization region bias.

Copyright c⃝ 2014 by M. Davarynejad

All rights reserved. No part of the material protected by this copyright notice may be re-

produced or utilized in any form or by any means, electronic or mechanical, including pho-

tocopying, recording or by any information storage and retrieval system, without written

permission of the author.

Printed in the Netherlands

 .

.

.

.

Acknowledgements

The road to understanding ourselves as human beings and mother nature is not paved. To

keep from being overwhelmed by the bewildering scale and challenges of the journey, we

have designed some stations along the way, one of which is PhD station. My main concern

during my studies has not been to find the best way. Instead, I have tried to find “a way”,

for which, like anybody, I needed a mentor to put me in the right direction, and colleagues,

friends and families to stand by me on my journey. I have been very fortunate in both

respects.

First of all I would like to express my deepest gratitude to my promoter Jan van den Berg,

who has been a tremendous help to me on my way to the PhD station, for his continuous

support and guidance in this path, and for his patience, enthusiasm, and immense knowledge

that has helped me a lot. I have been fortunate to have a mentor who gave me the freedom to

explore on my own and to develop my scientific work independently. Not only did I enjoy

our scientific discussions, but also the numerous personal talks and free lectures: you talked

with great enthusiasm about big data, inductive bias, cyber security, etc. I enjoyed all of

our meetings: thanks for all the good advice and discussions! Jan, it was a great pleasure

working with you!

I would like to express my deep gratitude to Jos Vrancken for his guidance in conduct-

ing this research. I have been very much appreciated his willingness to give his time, his

enthusiastic encouragement along with his constructive critiques.

I would like to thank my brother Ehsan and my best friends Jafar and Ebrahim for the

many prolific brainstorming discussions we had.

During my PhD, I had the opportunity to work on some other projects and scientific pa-

pers with some of my best colleagues, graduate students and friends: Carlos Coello Coello,

Ehsan Davarynejad, Sobhan Davarynejad, Gary Fogel, Ebrahim Rahimi, Jafar Rezaei, Chang

Wook Ahn, Andreas Hegyi, Ewa Snaar-Jagalska, Yubin Wang, Vincent Marchau, Jelmer

van Ast, Ron van Duin, Guido van Heck, Maarten Janssen and Zary Forghany from whom

I learned a lot. Thank you all!

I had the pleasure to co-supervise a number of very bright graduate students. I learned

how to supervise projects from the collaboration with Jan van den Berg supervising the

projects of Guido van Heck, Mohamad Alamili, Maarten Janssen and Antonio Spadaro. I

learned a lot from you guys.

Although I have been complaining about many relocations not only in our building,

but also within sections, I should have celebrated it. I had the chance to share my office

with several brilliant colleagues, with whom I discussed many interesting ideas and shared

wonderful time. Thank you Andreas Schmidt, Yusasniza Mohd Yunus, Ebrahim Rahimi,

Sam Soleimani, Devender Maheshwari, Thieme Hennis, Tanja Buttler, Yakup Koç, Mingxin

Zhang, Reza Haydarlou, Evangelos Pournaras, Çagri Tekinay and Yilin Huang.

Finally I would like to thank all my family and friends who supported me. I would like

vii

viii

to thank my friends, Mohammad and Saeed, for asking zillions of annoying, but critical and

useful, questions about my work. Furthermore I would like to thank Zary, Sara and Elnaz

for keeping them off my back every once in a while.

.

:

.

:

 .

.

.

.

:

 .

Mohsen Davarynejad,

The Hague, January 2013.

Contents

Acknowledgements vii

1 Introduction 1

1.1 Classical search methods . 2

1.1.1 Gradient based algorithms . 3

1.1.2 Direct search algorithms . 3

1.1.3 Limitations of classical search methods 4

1.2 Metaheuristics . 5

1.2.1 Convergence of metaheuristics . 6

1.3 Research goals . 6

1.4 Research Approach . 8

1.4.1 Research philosophy . 8

1.4.2 Research instruments . 9

1.5 Contributions . 9

1.6 Dissertation Outline . 10

References . 10

2 A Fitness Granulation Approach for Large-Scale Structural Design Optimiza-

tion 15

2.1 Introduction . 16

2.2 Structural design optimization problems 17

2.2.1 Easier/Smaller problems . 17

2.2.2 Voltage and pattern design of a piezoelectric actuator 18

2.3 GAs in structural optimization problems 19

2.4 Fitness Approximation in Evolutionary Computation 20

2.4.1 Fitness Inheritance . 20

2.4.2 Surrogates . 21

2.4.3 Artificial Neural Networks . 24

2.4.4 Final Remarks About Fitness Approximation 25

2.5 Adaptive Fuzzy Fitness Granulation . 26

2.5.1 Algorithm Structure . 26

2.5.2 How to control the length of the granule pool? 28

2.6 Numerical results . 29

2.6.1 3-Layer composite beam . 30

2.6.2 Airplane wing . 30

2.6.3 2D truss frame . 32

2.6.4 Voltage and pattern design of piezoelectric actuator 32

2.7 Analysis of results . 39

ix

x Contents

2.8 Conclusions . 41

References . 41

3 Evolutionary Hidden Information Detection by fitness approximation 47

3.1 Introduction . 48

3.2 The AFFG Framework . 50

3.2.1 Basic Idea . 50

3.2.2 Basic Algorithm Structure . 51

3.2.3 How to control the size of the granule pool? 53

3.2.4 How to Determine the Width of the Membership Functions 53

3.3 Benchmark problems and numerical results 54

3.4 Spread Spectrum Watermarking (SSW) 57

3.4.1 Recovering the PN sequence . 59

3.5 Concluding Remarks . 62

References . 63

4 Accelerating Convergence Towards the Optimal Pareto Front 67

4.1 Introduction . 68

4.2 Basic Concepts . 68

4.3 Previous Related Work . 69

4.3.1 Final Remarks on Fitness Approximation 71

4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 71

4.4.1 Algorithm’s Structure . 72

4.4.2 Controlling the size of the granule pool and protecting new pool

members through speciation . 74

4.5 Numerical results . 74

4.6 Conclusions and Future Work . 78

References . 79

5 Simulated Big Bounce: A continuous space global optimizer 83

5.1 Introduction . 84

5.2 A review of some popular heuristic algorithms 85

5.2.1 Evolutionary algorithms . 85

5.2.2 Particle swarm optimization . 86

5.2.3 A Brief Tour of the GSA . 87

5.3 Simulated Big Bounce (SBB) . 88

5.3.1 Elements of Big-Bang (BB) Theory: Back to the beginning 88

5.3.2 The Big Bounce Theory explains the Universe preceding the Big

Bang and after. 88

5.3.3 SBB algorithm . 90

5.4 A Brief Tour of the SBB Algorithm . 91

5.4.1 Mass Assignment . 93

5.5 Experimental Setup and Numerical results 93

5.5.1 Parameter Settings . 95

5.5.2 Results . 96

5.6 A comparative discussion on evolutionary computing paradigms vs. SBB . 100

Contents xi

5.7 Conclusions and Future Work . 101

References . 102

6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA 107

6.1 Introduction . 108

6.2 A metric for measuring center-seeking bias 109

6.2.1 Understanding the assumptions underlying center offset 109

6.2.2 A metric for center-seeking bias 111

6.3 A metric for initialization region bias . 112

6.4 Three population-based metaheuristics . 113

6.4.1 A brief tour of the particle swarm optimization 113

6.4.2 A Brief Tour of the GS Algorithm 113

6.4.3 mdGSA, a mass-dispersed GSA 115

6.5 Experimental results . 116

6.5.1 Experiment 1: Standard optimization problems 117

6.5.2 Experiment 2: Gene regulatory network model identification 130

6.6 Discussions . 133

6.7 Conclusions and Future Work . 135

References . 136

7 Conclusions and future research 143

7.1 Directions for Future Research . 146

TRAIL Thesis Series publications 149

Summary 151

Samenvatting 155

“If I have seen further it is by standing on the shoulders of

giants.”

Sir Isaac Newton - 1675

1
Introduction

When resources are limited in nature, competition is inevitable. This observation also holds

for society as we can conclude from competition occurring in business, politics, etc. due to

limitations of available resources. Competition over limited resources enforces exploration

of possibilities to improve the current status quo. Achieving optimal utility out of limited

resources is often desired and sometimes, crucial. This exploration process, which takes as

its objective to improvement any given current situation, is referred to as optimization. In an

ideal situation, the objective of optimization is to find values for a vector of parameters that

minimize or maximize a given objective function subject to given constraints [7]. A vector of

parameters where all constraints are satisfied is called a feasible solution. Feasible solutions

to the optimization problem are optimal solutions when their objective function value(s) are

superior to those of any other feasible solution. Optimization problems are ubiquitous, from

planning a route for a “Zombie walk” to designing a strong but light airplane wing, and from

holiday planning to finding a secret message hidden in a signal.

Optimization encompasses maximization and minimization of an objective function

f0 : E → IR where E ⊆ IRD and D comprise the dimensions of the search space E. A maxi-

mization problem can be transformed into a minimization problem and vice versa by taking

the negative of the objective function. The terms maximization, minimization and optimiza-

tion, therefore, are used interchangeably throughout this thesis.

A single-objective optimization problem can be defined as follows1 [7]

Given f0 : E → IR where E ⊆ IRD and D is the dimension of the search space E

find x∗ ∈ E such that fi(x)≤ bi, i = 1, . . . ,m

and f0(x
∗)≤ f0(x), ∀x ∈ E.

(1.1)

1For now we will be focusing on single-objective optimization.

1

2 1 Introduction

Here the vector x is the optimization variable of the problem, the function f0 is the

objective function, the functions fi : IRD → IR, i = 1, . . . ,m, are the constraint functions, bi,

i = 1, . . . ,m are bounds for the constraints, and vector x∗ is the global optimal solution of

f0. x∗B is a the local optimal solution of the region B when f0(x
∗
B) ≤ f0(x), ∀x ∈ B, where

B ⊂ E ⊆ IRD. Note that when dealing with unconstraint problems E = IRD.

Also interchangeable are the terms optimization variable, decision variable and design

variable. They refer to the vector x. We also use objective function, fitness function, cost

function and goodness interchangeably to refer to f0. Vectors are set in bold face throughout

this thesis.

Optimization problems encountered in practice appear in various types and with vari-

ous mathematical properties. As an example, the optimization problem is called a linear

program if both the objective function f0 and the constraints are linear, i.e., satisfy [7]

fi(αx+βy) = α fi(x)+β fi(y), i = 0, . . . ,m, (1.2)

for all x,y ∈ E and ∀α,β ∈ IR.

When the optimization problem is not linear, the problem is referred to as a nonlinear

program.

Global optimization is the process of finding the true global optimal solution. This

process begins by choosing initial starting solutions. A global optimizer is a solution method

which can find x∗ regardless of the initial starting point x0 ∈ E. A solution method is an

algorithm that finds the optimal solution (to some given accuracy) of a class of optimization

problems.

Optimization is an active research topic in many areas, including engineering, business,

the social sciences and mathematics. With the advent of new optimization algorithms, solu-

tion to various classes of optimization problems are gaining popularity [7]. Depending on

particular forms of the objective function, constraints and decision variables, optimization

problems can take various forms, with the following examples:

• Combinatorial optimization: where an objective function is defined over a finite set

of solutions.

• Box-Bounded optimization: where an objective function is defined over lower and

upper bounded design variables. The optimization problems addressed in this thesis

belong to this class of optimization problems.

In a broad sense, search algorithms may be classified as classical search methods and

metaheuristics. Partly in response to the limitations of classical search methods, metaheuris-

tics are gaining increasing attention. The next section outlines key limitations of classical

search methods. Before this, a brief introduction to them is provided.

1.1 Classical search methods

Classical search methods may be classified into Gradient based algorithms [11] and Direct

search algorithms [36].

1.1 Classical search methods 3

1.1.1 Gradient based algorithms

Gradient based optimization methods are of use when the objective function at hand is

continuous and differentiable. These methods often locate an optimal solution by employing

differential calculus.

In the 12th century Sharaf al-Din al-Tusi, in an attempt to find a root of some single-

dimensional function, developed an early form of Newton’s procedure [45]. Following

Newton’s iterative procedure, and starting from a reasonable guess, the root is guaranteed

to be found. This root finding method can be transformed to find either a local optimum

or the saddle point of a function. Gradient based algorithms assume the availability deriva-

tives. Newton’s method requires the objective function to be twice differentiable, and uses

first and second derivative information to construct a successive quadratic approximation

of the objective function. It is thus known as a second-order model. Newton’s procedure

is perhaps the classic form of numerical optimization. The Secant method, a well-known

extension of Newton’s procedure, does not need the derivatives to be evaluated directly;

rather, they are approximated.

Quasi-Newton methods generalize the Secant method to multi-dimensional problems

where the inverse Hessian matrix of second derivatives is approximated. The Quasi-Newton

methods not only require the existence of the gradient, they are also complex to implement.

A well-known instance of Quasi-Newton methods independently developed by Broyden [8],

Fletcher [18], Goldfarb [25], and Shanno [43], is known as the BFGS (Broyden Fletcher

Goldfarb Shanno) method.

Steepest decent which uses the first-order Taylor polynomial, assumes the availability

of the first derivatives to construct a local linear approximation of an objective function and

is a first-order method.

1.1.2 Direct search algorithms

While Newton’s method provides more than a decent direction, and has a quadratic con-

vergence (compared to linear convergence of Steepest decent), its performance is hampered

by the fact that the calculation of the Hessian matrix is required. That holds even when the

complex and expensive task of Hessian matrix calculation is alleviated by approximations

or variations. The main common practical difficulty, assuming a reasonable computing time

for obtaining the Hessian matrix, arises when the Hessian matrix is singular, ill-conditioned,

or is not positive definite. When the gradient of an optimization problem is not available,

e.g., due to a partially discontinuous or non-differentiable objective function, then direct

search methods are promising alternatives.

Direct search methods do not require derivative information, nor do they construct ap-

proximations of the objective function. They are thus also known as zero-order methods [7].

They are reasonably straightforward to understand and implement. Direct search methods

rely on sampling of the objective function. While samples of the objective function may

replace the actual gradient with an estimate of the gradient, precisely what it is that dis-

tinguishes them from gradient based algorithms is the sufficiency of the relative rank of

solutions, rather than the actual values. Hooke and Jeeves [30] provide the following de-

scription of direct search in their 1961 paper:

“We use the phrase ‘direct search’ to describe sequential examination of

4 1 Introduction

trial solutions involving comparison of each trial solution with the ‘best’ ob-

tained up to that time together with a strategy for determining (as a function

of earlier results) what the next trial solution will be. The phrase implies our

preference, based on experience, for straightforward search strategies which

employ no techniques of classical analysis except where there is a demonstra-

ble advantage in doing so.”

1.1.3 Limitations of classical search methods

When dealing with an optimization problem, several challenges arise. The problem at hand

may have several local optimal solutions, it may be discontinuous, the optimal solution

may appear to change when evaluated at different times, and the search space may have

constraints. The problem may have a large “hilly” search space, making it intractable to

try all candidate solutions in turn. The curse of dimensionality [3, 27], a notion coined by

Richard Bellman, is another obstacle when the dimensions of the optimization problem are

large.

Both gradient and direct search methods are generally regarded as local search meth-

ods [15, 26]. Nonlinear and complex dependencies that often exist among design the vari-

ables in real-world optimization problems contribute to the high number of local optimal

solutions. Classical methods cannot escape from these local optimal solutions.

Another common difficulty is that they cannot be efficiently parallelized on multi-pro-

cessor machines. This is especially important when measuring the fitness of candidate so-

lutions is computationally expensive [12, 13].

Many real-world optimization problems [9] have mixed discrete and continuous design

variables. A common approach to the optimization of this kind of problems, when using

classic optimization algorithms, is to treat all variables as continuous, locate the optimal so-

lution, and round off the discrete variables to their closest discrete values. The first problem

with this approach is a considerable deterioration of the objective function. The second is

the inefficiency of the search due to the evaluation of infeasible solutions. These difficulties

may be avoided during the execution of the optimization process by taking into account the

type of design variables.

Even if classical approaches offer quick convergence to an optimal solution when ap-

plied to a certain class of optimization problems, they may still not inefficient when applied

to a specific optimization problem. They are mostly tailored to the salient characteristics

of certain types of problems, e.g., they require a “high degree of interconnection between

the solver and the objective function” [22]. A notable example is the geometric program-

ming [6] method specifically designed to solve a posynomial-type objective function and

constraints. The conjugate gradient method is suitable for strictly convex quadratic objective

functions with finite and global convergence property, but it is not expected to work appro-

priately on multimodal optimization problems. While numerous nonlinear conjugate gradi-

ent methods for non-quadratic problems have been developed and extensively researched,

they are frequently subject to severely restrictive assumptions (e.g., their convergence de-

pends on specific properties of the optimization problem, such as Lipschitz continuity of

the gradient of the objective function). Even when designing an algorithm, in some cases,

efficiency is sacrificed in favor of appealing theoretical properties.

1.2 Metaheuristics 5

1.2 Metaheuristics

Classical search methods do not live up to the expectations of modern, computationally

expensive optimization problems of today. The shortcomings (Section1.1.3) of classical

search methods discussed above are partially addressed and remediated by metaheuristics.

We will follow the convention of Glover [20, 21] and use the term metaheuristics to refer

to all modern nature-inspired optimization algorithms. These are a class of iterative search

algorithms that aim to find reasonably good solutions to optimization problems by com-

bining different concepts for balancing exploration (also known as diversification, that is,

the ability to explore the search space for new possibilities) and exploitation (also known

as intensification, that is, the ability to find better solutions in the neighborhood of good

solutions found so far) of the search process [39].

General applicability and effectiveness are particular advantages of metaheuristics. An

appropriate balance between intensively exploiting areas with high quality solutions (the

neighborhood of elite solutions) and moving to unexplored areas when necessary, is the

driving force behind the high performance of metaheuristics [5]. Metaheuristics require

a large number of function evaluations. They are often characterized as population-based

stochastic search routines which assures a high probability of escape from local optimal

solutions when compared to gradient-based and direct search algorithms. Metaheuristics do

not necessarily require a good initial guess of optimal solutions, in contrast to both gradi-

ent and direct search methods, where an initial guess is highly important for convergence

towards the optimal solution [14, 17]. Metaheuristics are also easy to hybridize [22], a

property that makes it possible for them to exploit problem-specific heuristics.

Nature is the most complex system that has field tested solutions to many problems [22,

31, 46]. Imitation of natural processes has had a profound influence on solvers for chal-

lenging optimization problems, and has been transformed into a mature subfield existing

somewhere in the intersection of computer science, physics and biology. There are a grow-

ing number of examples where nature-inspired algorithms have been successfully applied

to practical problems.

Metaheuristics can be classified into single-solution search algorithms and population-

based search algorithms [35]. Single-solution solvers are solution-to-solution search meth-

ods in which a single solution is evolved following a certain set of principles. Notable

examples of single-solution solvers are simulated annealing and tabu search. Population-

based search algorithms, such as genetic algorithms and particle swarm optimization, on

the other hand, evolve a set of solutions in each iteration and generate new solutions by

somehow combining multiple solutions. While the available nature-inspired metaheuristics

share similarities in their search processes, their performance may differ considerably.

The most used metaheuristic in the literature is concerns evolutionary algorithms. A

population of sample potential solutions provide information about the objective function. A

new population of potential solutions is generated (stochastically, in the main) by selection

and manipulation of those samples in the hope of approaching the optimal solution. One

of the earliest metaheuristics concerns genetic algorithms (GAs) [23, 24, 29], a well-known

approach that is based on the idea of natural selection. GAs have a very different working

principle than most of the classical optimization problems. In GAs, a population of solutions

evolve through a series of operators, including selection, crossover, and mutation. The

section operator assures survival of the fittest solutions of the population. Crossover is an

6 1 Introduction

operator that combines more than one fit solution, while mutation modifies each solution.

These operators specify the neighborhood of a solution to be evaluated. While genetic

algorithms may work with variables themselves, or a coding of variables, their most decisive

characteristic is the selection operator.

The theory of evolution provides a sound explanation for numerous natural phenomena.

The development of resistance in HIV to anti-retroviral drugs is only one instance of the

laws of selection and mutation in evolution. Motivated by principles of biological evolu-

tion, genetic algorithms are search procedures that require minimal problem information.

Attempts to implement some search strategies inspired by natural evolution were made by

Fogel et. al [19]. More sophisticated algorithms, with some comparison of their property

of convergence, are explored later [2, 42]. A systematic theoretical analysis of genetic al-

gorithms is presented in [23, 24, 29].

Apart from GAs, this thesis will study variants of two popular optimization methods,

namely particle swarm optimization (PSO) and gravitational search algorithms (GSA).

PSO was originally proposed by Kennedy and Eberhart [34] as a model for the social be-

havior of individuals within a swarm. Each particle traverses the search space under the

influence of its own best experience and that of its topological neighbors. GSAs [41] are

among those population-based optimization algorithms that have been introduced recently,

and is gaining popularity. It uses the concept of formation of complex structure in the uni-

verse. In GSA, the movement of each particle follows Newtons law of gravitation.

1.2.1 Convergence of metaheuristics

While mathematical proof for the convergence of global optimization algorithms can be

appealing, such proofs are often of no use without practical value. The proofs available

are often made in the form of infinity-limits [40], where an optimizer, provided enough

iterations, is proven to find a small region surrounding the optimum. See for example [4].

When the exact same proof can be provided for random sampling search algorithms, proofs

relying on infinity-limits are of no practical use.

Optimization algorithms, as stated by the No Free Lunch (NFL) set of theorems [47],

will expose equal performance over all possible cost functions. This implies that no algo-

rithm can be designed so as to maintain superiority over linear enumeration of the search

space, or even a random sampling search algorithm. However, the NFL theorem does not

hold for all subsets of the set of all possible cost functions. This implies that when de-

veloping an optimization algorithm, they can be tailored to the salient problem-specific

characteristics to solve an optimization problem efficiently. Bearing in mind the No Free

Lunch theorem, when developing metaheuristics, they need to be tested empirically.

1.3 Research goals

In this section we introduce the general context of our research by providing an overview of

the challenges of metaheuristics. We also define the research goals and sub goals. Bound-

aries for our research are also explained.

Metaheuristics may suffer from a slow rate of convergence towards the global opti-

mum, which implies that they may be too (computationally) expensive for certain problems.

1.3 Research goals 7

Consequently, it is a challenge to develop computationally efficient evolution-based search

methods. The aim of this research is to find ways or improve the currently exiting solutions

to improve the performance of this type of search methods. This has lead us to our main

research goal:

Central goal is to improve the performance of some metaheuristics by alleviating cer-

tain identified drawbacks.

This required us to look at the different situations where metaheuristics exhibit a slow

convergence. We have identified that there are at least two main reasons responsible for

their slow convergence: a) The large computation time required for calculating the fitness

function, and b) High-dimensional search space with complex fitness landscape.

To alleviate the convergence time of computationally expensive optimization problems,

a variety of techniques have been proposed in the literature. Perhaps the most obvious

choice is to use parallelization techniques [1]. However, another alternative is to rely on

fitness approximation techniques, which avoid evaluating every individual in the popula-

tion of solutions (see [32, 33]). Based on an approximate model of the fitness landscape

these approaches estimate the quality of some individuals. When using fitness approxi-

mation techniques, it is necessary to strike a balance between exact fitness evaluation and

approximate fitness evaluation.

Lack of sufficient training data is the main problem when using most fitness approxi-

mation models currently available, hence the failure to obtain a model with sufficient ap-

proximation accuracy. Since evaluation of the original fitness function is time consuming

and/or expensive, the approximate model may be of low fidelity and may even introduce

false optima. Furthermore, if the training data does not cover the search domain, large er-

rors may occur due to extrapolation. Errors may also occur when the set of training points

is not sufficiently dense and uniform.

In multi-objective optimization problems (MOOP), the complexity of the problem is

normally higher compared to that of single-objective optimization problems (SOOP) [10].

In general, although the fitness approximation approaches used in SOOP may be extended

and adapted for MOOP, such adaptation may require more elaborate mechanisms.

Metaheuristics, by making a tradeoff between exploration and exploitation, are strate-

gies used to guide the search process iteratively. When studying the properties of these

algorithms, it turns out that some population-based optimization techniques suffer from a

notable and specific search bias [37]. They tend to perform best when the optimum is lo-

cated at, or near the center of the search space. This is known as center-seeking bias (CSB).

General purpose optimizers are those which make no assumptions about the problem at

stake. Consequently, if we want to compare the quality of the solutions found by a set of

metaheuristics for a series of benchmark problems with the optimal solution near the center

of the search space, the comparison becomes unfair. Metaheuristics may also suffer from

bias towards the initialization region. This is known as initialization search bias (IRB).

Observe that, while search algorithms may perform better when they are initialized within

the whole search space, and benefit from knowing the search space, one with a lower bias

towards the initialization region is preferable to one with a higher bias.

This led us to to following sub goals, which together with the main goal are addressed

at the end of Chapters 2 to 6:

8 1 Introduction

1. Reduction of computational complexity related to

(a) slow convergence and/or

(b) high computation costs of fitness evaluations

2. More effective search strategies

(a) by improved balancing of exploration and exploitation and

(b) measuring certain search biases (e.g. CSB and IRB)

In our research we focused on well-known and widely used metaheuristics including

GAs, PSO and GSA. It was quite possible for us to include other global search algorithms,

but we did not specially research them. Although the ideas presented here are applicable for

other population-based search algorithms, we did not wish to continue the ongoing debate

on which algorithm is superior to others in terms of convergence. We also did not study the

CSB and IRB of a large class of global optimization algorithms, but we have presented a

framework that enables such a study.

1.4 Research Approach

Addressing the challenges of metaheuristics raised in this thesis requires a thorough under-

standing of artificial intelligence in general and computational intelligence and approximate

reasoning in particular. The research approach chosen in this thesis is presented below.

1.4.1 Research philosophy

The content of this thesis has been inspired by the philosophical school of positivism [11].

According to this philosophy, scientific knowledge must be based on logical inference from

a set of objective, observable and measurable facts. The data-collection process and the

findings that come from empirical evidence have to be repeatable. Positivists are reduc-

tionists, in that they break a problem down to its constituent parts, a common practice in

complex systems analysis and design.

Research strategy

Among the two distinct paradigms that characterize much of the research in information

systems, namely behavioral science and design science [28], the latter is the research strat-

egy followed in this thesis. Design science is outlined in seven guidelines [28].

The contribution of a design science research to the user community is a purposeful and

innovative artifact that delivers utility in terms of solving a relevant problem. In this thesis, a

number of algorithms is proposed to address some areas of concerns discussed in Section1.3

(guideline 1). While the artifacts are of importance in both the current reality and practice

of real-world optimization problems (guideline 2), their effectiveness is shown using rele-

vant and well-established test problems and real-world optimization problems (guideline 3)

which provide verifiable contributions to the studied research area (guideline 4). The con-

struction and evaluation of each artifact designed relies on appropriate performance metrics

1.5 Contributions 9

(guideline 5). The artifacts are improved during the evaluation process, where design alter-

natives are tested so to satisfy the research problem and objectives (guideline 6). Various

artifacts discussed throughout this thesis are a result of these design alternatives. It is gen-

erally acknowledged that the results of design science should be properly communicated to

the relevant audience as a measure to strengthen cumulative knowledge, as well as to mo-

tivate future work (guideline 7). Chapter 7 in general, and each other chapter in particular,

discusses and envisions the impact of this research on the field.

1.4.2 Research instruments

The research in each chapter of this thesis involves four types of research tool [44]: (i) liter-

ature review, (ii) experiment (iii) evaluation and (iv) case study. Literature review provides

the background knowledge required to conduct research and motivates the research ques-

tion. Experiment is the tool to test the functionality of the proposed solutions in addressing

the challenges identified. The empirical evidence that this thesis provides comes from con-

trolled experiments performed in simulation environments. Evaluation follows each of the

performed experiments. For some of the cases, the applicability of the solutions introduced

is studied using real-world case studies.

1.5 Contributions

While the existing methods aim to reduce computational cost by approximating the fitness

function, the prevalent problem of interpolation in rough surfaces remains. If the assumption

of smooth continuity is invalid, interpolation might even yield values that are not physically

realizable. Furthermore, in using interpolation, we may be blind to optimal solutions, as

interpolation assumes a pattern of behavior that may not be valid around optimal peaks.

This thesis addresses this problem by introducing the concept of information granu-

lation. With a view to reducing computational cost, the concept of fuzzy granulation is

deployed to effectively approximate the fitness function. The advantages of this approach

over others are that no training samples are required, and that the approximate model is

updated dynamically with negligible overhead cost.

Some evolutionary computing techniques have advantages over others in terms of ease

of implementation, preservation of diversity of the population, efficiency, etc. [16]. For ad-

vancement of their performance they may be simplified, hybridized etc. There has also been

a steady increase in the number of global optimization algorithms, each characterized by its

unique population dynamics. Different population dynamics characterize the way two con-

flicting goals, exploration (diversification) and exploitation (intensification), are balanced.

In practice, metaheuristic algorithms have been shown to often find local minima, some-

times of low quality, meaning that the chosen balance between exploration and exploitation

is not adequate to the problem at stake. We aim at presenting a solver that, next to exploita-

tion, applies robust exploration in order to escape from local minima.

A review of the literature reveals the lack of an appropriate quantification metric for

measuring CSB and IRB. Quantitative measures are succinct and are the preferred disclo-

sure form not only for a) comparison of the degree of bias of a set of search algorithms,

but are also desirable when the task is to b) discover whether a single search algorithm has

10 1 Introduction

any search bias at all. In this thesis, two metrics are introduced, one for measuring center-

seeking bias (CSB) and one for initialization region bias (IRB). An alternative for center

offset [38], a common approach to analyzing center-seeking behavior of algorithms, is also

proposed, as we noticed that its assumption did not always hold.

1.6 Dissertation Outline

The reminder of this thesis is organized as follows.

Chapter 2 starts with an introduction to the structural design optimization problems

as an example of computationally expensive optimization problems. This is followed by

an extensive review of the existing fitness approximation approaches. This is followed in

turn by a proposition for an adaptive predictive model for fitness approximation, with the

goal of deciding on the use of expensive function evaluations. Empirical analysis of the

performance of the proposed algorithm, when applied to a set of four structural design

problems, is then presented.

Chapter 3 presents the development of an auto-tuning strategy with the aim of avoiding

the tuning of the parameters of the algorithm introduced in Chapter 2. Empirical analysis

of the behavior of the proposed predictive model, applied to two sets of problems, then

follows. The first of these is a set of several numerical benchmark problems with various

optimization characteristics. The second is the real-world problem of the detection of the

hidden information in a spread spectrum watermarked signal.

An extension of the developed fitness approximator to multiobjective problems is pre-

sented in Chapter 4. The proposed extension is then applied to a set of synthetic benchmark

functions. These synthetic benchmarks facilitate specific aspects of the proposed extension

to be tested.

Chapter 5 presents a new metaheuristic based on the theory of Big Bounce. The algo-

rithm has been tested by comparing its performance with the performance of five different

variations of other metaheuristics.

In Chapter 6, two metrics are introduced, one for measuring center-seeking bias (CSB)

and one for initialization region bias (IRB). The metrics introduced are used to evaluate the

bias of three algorithms while running on a test-bed of optimization problems which have

their optimal solution at, or near to, the center of the search space. The most prominent

finding is considerable CSB and IRB of gravitational search algorithm(GSA). In addition, a

partial solution to the center-seeking and initialization region bias of GSA is proposed. The

performance of the proposed variant of GSA which promotes the global searching capability

of GSA is verified using a number of synthetic benchmarks problems. The solvers studied

are used to identify the parameters of a gene regulatory network system.

Chapter 7 provides a summary of the main findings of this thesis and presents future

research directions.

The appendices present a glossary of the terms and a list of publications derived from

this work.

Bibliography 11

Bibliography

[1] Alba, E. and Tomassini, M. (2002). Parallelism and Evolutionary Algorithms. IEEE

Transactions on Evolutionary Computation, 6(5):443–462.

[2] Bagley, J. (1967). The behavior of adaptive systems which employ genetic and correla-

tion algorithms. PhD thesis, PhD thesis, University of Michigan, Ann Arbor.

[3] Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,

N.J.

[4] Birbil, Ş., Fang, S., and Sheu, R. (2004). On the convergence of a population-based

global optimization algorithm. Journal of global optimization, 30(2):301–318.

[5] Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308.

[6] Boyd, S., Kim, S., den berghe, L. V., and Hassibi, A. (2007). A tutorial on geometric

programming. Optimization and Engineering, 8(1):67–127.

[7] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.

[8] Broyden, C. (1970). The convergence of a class of double-rank minimization algo-

rithms. IMA Journal of Applied Mathematics, 6(1):76–90.

[9] Chiong, R., Weise, T., and Michalewicz, Z. (2011). Variants of evolutionary algorithms

for real-world applications. Springer.

[10] Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition.

ISBN 978-0-387-33254-3.

[11] Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods

approaches. Sage Publications, fourth edition.

[12] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general

framework for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE

Congress on Evolutionary Computation (CEC’07), pages 951–956. IEEE.

[13] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-

ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,

R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for

Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[14] Deb, K. (1999). An introduction to genetic algorithms. In Sadhana (Academy Pro-

ceedings in Engineering Sciences), volume 24, pages 293–315.

[15] Deb, K. and Goyal, M. (1997). Optimizing engineering designs using a combined

genetic search. In Proceedings of the seventh international conference on genetic algo-

rithms, pages 521–528.

12 1 Introduction

[16] del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J., and Harley, R.

(2008). Particle swarm optimization: basic concepts, variants and applications in power

systems. IEEE Transactions on Evolutionary Computation, 12(2):171–195.

[17] Dorsey, R. and Mayer, W. (1995). Genetic algorithms for estimation problems with

multiple optima, nondifferentiability, and other irregular features. Journal of Business &

Economic Statistics, 13(1):53–66.

[18] Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer

Journal, 13(3):317–322.

[19] Fogel, L., Owens, A., and Walsh, M. (1966). Artificial intelligence through simulated

evolution.

[20] Glover, F. (1986). Future paths for integer programming and links to artificial intelli-

gence. Computers & Operations Research, 13(5):533–549.

[21] Glover, F. and Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[22] Goldberg, D. (1994). Genetic and evolutionary algorithms come of age. Communica-

tions of the ACM, 37(3):113–119.

[23] Goldberg, D. (2002). The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Kluwer Academic Publishers.

[24] Goldberg, D. and Holland, J. (1988). Genetic algorithms and machine learning. Ma-

chine learning, 3(2):95–99.

[25] Goldfarb, D. (1970). A family of variable metric methods derived by variational

means. Mathematics of computation, 24(109):23–26.

[26] Haddad, O., Afshar, A., and Marino, M. (2006). Honey-bees mating optimization

(hbmo) algorithm: a new heuristic approach for water resources optimization. Water

Resources Management, 20(5):661–680.

[27] Hastie, T., Tibshirani, R., and Friedman, J. (2008). The elements of statistical learning.

Springer-Verlag, 2nd edition.

[28] Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information

systems research. MIS quarterly, 28(1):75–105.

[29] Holland, J. (1975). Adaptation in natural and artificial systems. University of Michi-

gan Press, Ann Arbor, MI.

[30] Hooke, R. and Jeeves, T. (1961). ”direct search” solution of numerical and statistical

problems. Journal of the ACM (JACM), 8(2):212–229.

[31] Huebsch, N. and Mooney, D. (2009). Inspiration and application in the evolution of

biomaterials. Nature, 462(7272):426–432.

[32] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing-A Fusion of Foundations, Methodologies and Applications,

9(1):3–12.

Bibliography 13

[33] Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and

future challenges. Swarm and Evolutionary Computation, 1:61–70.

[34] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-

tional Conference on Neural Networks, volume 4, pages 1942–1948.

[35] Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[36] Kolda, T., Lewis, R., and Torczon, V. (2003). Optimization by direct search: New

perspectives on some classical and modern methods. SIAM review, 45(3):385–482.

[37] Mitchell, T. (1997). Machine learning. McGraw Hill.

[38] Monson, C. and Seppi, K. (2005). Exposing origin-seeking bias in pso. In Proceedings

of the 2005 conference on Genetic and evolutionary computation, pages 241–248.

[39] Osman, I. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Opera-

tions Research, 63(5):511–623.

[40] Pedersen, M. (2010). Tuning & simplifying heuristical optimization. PhD thesis, PhD

thesis, University of Southampton.

[41] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). Gsa: a gravitational

search algorithm. Information Sciences, 179(13):2232–2248.

[42] Rosenberg, R. (1967). Simulation of genetic populations with biochemical properties.

PhD thesis, PhD thesis, University of Michigan.

[43] Shanno, D. (1970). Conditioning of quasi-newton methods for function minimization.

Mathematics of computation, 24(111):647–656.

[44] Sjoberg, D., Dyba, T., and Jorgensen, M. (2007). The future of empirical methods in

software engineering research. In Future of Software Engineering, 2007, pages 358–378.

[45] Soleymani, F. and Sharifi, M. (2011). On a general efficient class of four-step root-

finding methods. International Journal of Mathematics and Computers in Simulation,

5:181–189.

[46] Wen, H., Zhang, S., Hapeshi, K., and Wang, X. (2008). An innovative methodology

of product design from nature. Journal of Bionic Engineering, 5(1):75–84.

[47] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82.

“Complexity makes discovery of the optimum a long, perhaps

never-to-be completed task, so the best among tested options

must be exploited at every step.”

John Holland - 1992

2
A Fitness Granulation Approach for

Large-Scale Structural Design

Optimization 1

Abstract

The complexity of large-scale mechanical optimization problems is partially due to the pres-

ence of high-dimensional design variables, the interdependence among design variables,

and the high computational cost of the finite element simulations needed to evaluate the

fitness of candidate solutions. Evolutionary cycles are ruled by competitive games of sur-

vival and not merely by absolute measures of fitness, as well as exploiting the robustness

of evolution against uncertainties in the fitness function evaluations. This chapter takes up

the complexity challenge of mechanical optimization problems by proposing a new fitness

granulation approach that attempts to cope with many difficulties of fitness approximation

approaches that have been reported in the literature. The approach is based on adaptive

fuzzy fitness granulation having as its main aim to strike a balance between the accuracy

and the utility of the computations. The adaptation algorithm adjusts the radials of influ-

ence of granules according to the perceived performance and level of convergence attained.

Experimental results show that the proposed approach accelerates the convergence towards

optimal solutions, when compared to the performance of other more popular approaches.

1This chapter is based on:

• M. Davarynejad, J. Vrancken, J. van den Berg, and C. A. Coello Coello, “A Fitness Granulation Approach

for Large-Scale Mechanical Optimization Problems”, In Raymond Chiong and Zbigniew Michalewicz

(Eds.), Variants of Evolutionary Algorithms for Real-World Applications, pp. 245-280, Springer, Berlin,

2012. (ISBN 978-3-642-23423-1)

15

16 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

This suggests its applicability to other complex finite element-based engineering design

problems.

2.1 Introduction

Since the 1960s, and due to significant developments in numerical methods and computing,

the finite element analysis (FEA) became a frequent tool to solve engineering problems that

arise in systems with several interacting components, complex geometries, and which are

under the effect of different physical phenomena. These systems elude exact techniques, but

are reasonably manageable by means of a systematic discretization approach known as the

finite element method (FEM) [47]. At the same time that the FEM was developed, efficient

and fast optimization algorithms have arisen for solving various kinds of mathematical and

optimization problems (OPs). Both trends contributed to the development of large-scale

structural design and optimization problems (SDOPs) and to the discipline of structural

optimization. The aim of structural optimization is to generate automated procedures for

finding the best possible structure with respect to at least one criterion (the objective), and

having to satisfy a set of constraints, by selecting from a set of geometrical dimensions,

material properties and/or topological parameters [43].

Structural optimization problems are often challenging due to their high computational

demands 2, multi-modality, non-convexity, high dimensionality, and multi-objectivity. Be-

cause of this, many structural optimization problems are weakly amenable to conventional

mathematical programming approaches, which motivates the use of alternative solution

methods.

Randomized search heuristics are among the simplest and most robust strategies that are

applicable to a wide range of optimization problems including structural design (SD). While

they can normally provide nearly optimal solutions, they cannot guarantee convergence

to the optimum. However, their computational requirements are normally high. Among

the randomized search heuristics currently available, evolutionary algorithms (EAs) have

become very popular in the last few years, mainly because of their ease of use and efficacy.

EAs are stochastic search techniques which operate on a set of solutions (the so-called

population), that are modified based on the principles of the natural evolution (i.e., the

survival of the fittest) [39]. EAs have been commonly adopted for solving complex SD

problems. For example, Walker and Smith [61] combined the FEM and EAs to minimize

a weighted sum of the mass and deflection of fiber-reinforced structures. Similarly, Abe

et al. [1] used FEM and an EA for structural optimization of the belt construction of a

tire. More recently, Giger and Ermanni [21] applied FEM and EA to minimize the mass of

composite fiber-reinforced plastic (CFRP) rims subject to strength and stiffness constraints.

However, EAs may suffer from a slow rate of convergence towards the global optimum,

which implies that they may be too (computationally) expensive for certain SD problems.

Consequently, it is challenging to develop computationally efficient evolution-based search

methods.

To alleviate the problem of converging time of computationally expensive optimization

problems, a variety of techniques has been proposed in the literature. Perhaps the most ob-

2Finite element analysis is computationally costly and may require several days to complete its calculations,

even for a relatively simple problem.

2.2 Structural design optimization problems 17

vious choice is to use parallelization techniques [4]. However, another alternative is to rely

on fitness approximation techniques, which avoid evaluating every individual in the popula-

tion of an EA. In order to do this, these approaches estimate the quality of some individuals,

based on an approximate model of the fitness landscape. This is the sort of approach on

which this chapter is focused. Section 2.4 provides a review of fitness approximation tech-

niques in evolutionary computation. When using fitness approximation techniques, it is

necessary to strike a balance between exact fitness evaluation and approximate fitness eval-

uation. In this chapter, with a view to reducing computational cost, we employ the concept

of fuzzy granulation to effectively approximate the fitness function. The advantages of this

approach over others is the fact that no training samples are required, and the approximate

model is dynamically updated with no or negligible overhead cost.

The remainder of this chapter is organized as follows. The following section elabo-

rates upon four SD optimization problems before explaining the genetic algorithm (GA)

approach proposed here for the SD optimization task (see Section 2.3). This is followed

by a review of a variety of fitness approximation approaches that have been proposed for

EAs in Section 2.4. In order to accelerate the convergence speed of the GA with a min-

imum number of fitness function evaluations, a novel method is presented in Section 4.4.

The approach is based on generating fuzzy granules via an adaptive similarity analysis. To

illustrate the efficiency of the proposed method in solving the four SD problems introduced

in Section 2.2, the performance results of different optimization algorithms are presented in

Section 2.6. A further statistical analysis confirms that the proposed approach reduces the

computational complexity of the number of fitness function evaluations by over 50% while

reaching similar or even better final fitness values. Finally, in Section 3.5 we provide our

conclusions.

2.2 Structural design optimization problems

Four SD optimization problems, with increasing complexity are investigated here. They are

the following: (1) the design of a 3-layer composite beam with two decision variables, (2)

the design of an airplane wing with six decision variables, (3) the design of a 2D truss frame

with 36 decision variables, and (4) the voltage/pattern design of piezoelectric actuators.

We discuss in more detail the last problem, because of its complexity. Such a problem

consists of finding the best voltage and pattern arrangement for static shape control of a

piezoelectric actuator with 200 design variables. Clearly, this is a more challenging and

heavy optimization task from a fitness/computational perspective.

2.2.1 Easier/Smaller problems

The first three SD problems are covered in this section. The ultimate goal in these opti-

mization problems is to maximize the first natural frequency 3 of the given structure. To

allow more space for the last problem (described in Subsections 2.2.2 and 2.6.4), we limit

ourselves here to a short description of the other problems.

3Resonance occurs when the excitation frequency is the same as the natural frequency. For the same excita-

tion energy, the resulting vibration levels at resonance frequency is higher than other exciting frequencies. The

importance of maximizing the first natural frequency is to avoid the resonance phenomenon to occur.

18 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

3-Layer composite beam

A multi-layered composite beam is constructed from a combination of two or more layers of

dissimilar materials that are joined together to act as a unit in which the resulting combina-

tion is lighter, stronger and safer than the sum of its parts. A finite element analysis model

has been developed to analyze the multi-layer composite beams and plates. The objective is

to raise the first natural frequency of the beam.

Airplane wing

An airplane wing is an elastic structure that, in the presence of aerodynamic loads, starts

to vibrate. In this study, we treated the natural frequency as the design objective since it is

quite intuitive and natural to raise the natural frequencies of the wing so that it is not easily

excited by undesirable disturbances.

2D truss frame

Trusses are the most commonly used structure and in comparison to heavily-built struc-

tures, they have a relatively small dead weight. A truss consists of bar-elements (members)

connected by hinged joints to each other and supported at the base. Truss design problems

belong to the class of load-supporting structure design problems that are usually finite-

dimension optimization problems. The design of load-supporting structures plays a key

role in engineering dynamics. The objective (fitness) here is to raise the structure’s first

natural frequency.

2.2.2 Voltage and pattern design of a piezoelectric actuator

Piezoelectric materials exhibit both direct (electric field generation as a response to me-

chanical strains) and converse (mechanical strain is produced as a result of an electric field)

piezoelectric effects. The direct effect is used in piezoelectric sensors while the converse

effect is used in piezoelectric actuators.

Apart from ultrasound applications, energy harvesting, sensor applications (e.g., strain

gauges and pressure sensors), and vibration/noise control domains, piezoelectric materi-

als are widely used as actuators in smart structures. Smart structures with integrated self-

monitoring, self-diagnosis and control capabilities have practical uses ranging from MEMS,

biomedical engineering, control engineering, aerospace structures, ground transportation

systems and marine applications. The smart structures’ technology is widely used in biome-

chanics, i.e., to expand obstructed blood vessels or to prevent further enlargement of blood

vessels damaged by aneurysms [37] which most commonly occurs in arteries. Another

apparent practical use of smart and adaptive structural systems is to properly control the

undesirable motions of geometry-changing structures.

Piezoelectric actuators are also found in an enormous range of applications for dis-

tributed actuation and control of mechanical structures for shape correction and modifica-

tion. One example for this is their use in flexible aircrafts where they improve the aerody-

namic performance and deformation control of conformal antennas [26], through their in-

corporation within the structure. For instance, in [34], an optimization algorithm is used to

deal with the shape control of functionally graded material (FGM) plates which are actively

2.3 GAs in structural optimization problems 19

controlled by piezoelectric sensor and actuator patches. A computational intelligence-based

algorithm is used to derive the optimal voltage distribution, by adopting the elements of the

gain control matrix as the design variables.

The optimal shape control and correction of small displacements in composite struc-

tures using piezoelectric actuators concern complex engineering problems. To achieve a

predefined shape of the structure of the metal plate, in this chapter we will present a fast

converging global optimization algorithm to find the optimal actuation voltages that need to

be applied to the piezoelectric actuators and to the pattern of piezoelectric patches.

2.3 GAs in structural optimization problems

Genetic algorithms (GAs) are perhaps the most popular type of EAs nowadays and have

been applied to a wide variety of problems [22]. The GA optimization procedure for solv-

ing SD problems begins with a set of randomly selected parents (design variables). If any

of these parents does not meet all the physical constraints, they are modified until they

do. In subsequent generations, each offspring’s phenotype is also checked for its feasibil-

ity. Furthermore, the fitness values of the parents and their offspring are compared and the

worst individuals are rejected, preserving the remaining ones as parents of the new genera-

tion (known as steady-state population treatment). This procedure is repeated until a given

termination criterion is satisfied.

Due to their robustness, GAs have been frequently used in a variety of real world opti-

mization applications including optimizing the placement of actuators on large space struc-

tures [20], the design of a low-budget lightweight motorcycle frame with superior dynamic

and mechanical properties [51], and the evolution of the structural configuration for weight

minimization of a space truss structure [32]. The implementation of a GA can be summa-

rized as follows:

1. Initialization: Initialize P design variable x = {x1,x2, . . . ,xi, . . . ,xP}, where P is the

population size.

2. Constraints check: If satisfied, continue, else modify xi until the candidate solution

becomes feasible.

3. Evaluation (Analysis): Evaluate the fitness function f (xi), i = {1,2,
. . . ,P}.

4. Convergence check:

(a) if satisfied stop,

(b) else select the next generation parent design variable, apply genetic operators

(mutation, recombination) and generate the next offspring design variables x.

Go to step 2.

EAs in general are often expensive in the sense that they may require a high number

of computationally costly objective function evaluations. As a result, it may be necessary

to forgo an exact evaluation and use approximated fitness values that are computationally

efficient. In the design of mechanical structures, for instance, each exact fitness evaluation

20 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

requires the time-consuming stage of FEA which, depending on the size of the problem,

may consume from several seconds up to several days. If we assume a conventional genetic

algorithm with a fixed and modest population size of 100, a maximum of 100 generations,

and a very small-scale structural problem that requires 10 seconds for each fitness evalua-

tion, the total execution of the GA would require 30 hours! This should make evident the

inhibiting role of the computational complexity associated to GAs (and EAs, in general) for

more non-trivial and large-scale problems.

Since one of the crucial aspects for solving large-scale SD optimization problems using

EAs is the computational time required, in the following section we outline a few existing

strategies that have been proposed to deal with this issue.

2.4 Fitness Approximation in Evolutionary Computation

As indicated before, one possibility to deal with time-consuming problems using a GA is to

avoid evaluating every individual and estimate instead the quality of some of them based on

an approximate model of the search space. Approximation techniques may estimate indi-

viduals’ fitness on the basis of previously observed objective function values of neighboring

individuals. There are many possible approximation models [24]. Next, we will briefly re-

view some of the most commonly adopted fitness approximation methods reported in the

specialized literature.

2.4.1 Fitness Inheritance

This is a very simple technique that was originally introduced by Smith et al. [60]. The

mechanism works as follows: when assigning fitness to an individual, some times we eval-

uate the objective function as usual, but the rest of the time, we assign fitness as an average

(or a weighted average) of the fitness of the parents. This fitness assignment scheme will

save us one fitness function evaluation, and operates based on the assumption of similarity

between an offspring and its parents. Clearly, fitness inheritance cannot be applied all the

time, since we require some true fitness function values in order to obtain enough infor-

mation to guide the search. This approach uses a parameter called inheritance proportion,

which regulates how many times do we apply fitness inheritance (the rest of the time, we

compute the true fitness function values). As will be seen next, several authors have reported

the use of fitness inheritance.

Zheng et al. [66] used fitness inheritance for codebook design in data compression tech-

niques. They concluded that the use of fitness inheritance did not degrade, in a significant

way, the performance of their GA.

Salami et al. [55] proposed a Fast Evolutionary Strategy (FES) in which a fitness and

associated reliability value were assigned to each new individual. Considering two decision

variables pi
1 = (xi

1, f i
1,r

i
1) and pi

2 = (xi
2, f i

2,r
i
2) where xi

1 and xi
2 are the chromosomes 1 and

2 at generation i with fitness values f i
1 and f i

2 and reliabilities ri
1 and ri

2, respectively. In this

scheme, the true fitness function is only evaluated if the reliability value is below a certain

threshold. Otherwise, the fitness of the new individual and its reliability value is calculated

from:

2.4 Fitness Approximation in Evolutionary Computation 21

f i+1 =
S1ri

1 f i
1 +S2ri

2 f i
2

S1ri
1 +S2ri

2

(2.1)

and

ri+1 =
(S1ri

1)
2 +(S2ri

2)
2

S1ri
1 +S2ri

2

(2.2)

where S1 is the similarity between xi+1
1 and xi

1 and S2 is the similarity between xi+1
1 and xi

2.

Also, they incorporated random evaluation and error compensation strategies. Clearly, this

is another (more elaborate) form of fitness inheritance. Salami et al. reported an average

reduction of 40% in the number of evaluations while obtaining similar solutions. In the same

work, they presented an application of (traditional) fitness inheritance to image compression

obtaining reductions ranging from 35% up to 42% of the total number of fitness function

evaluations.

Pelikan et al. [44] used fitness inheritance to estimate the fitness for only part of the

solutions in the Bayesian Optimization Algorithm (BOA). They concluded that fitness in-

heritance is a promising concept, because population-sizing requirements for building ap-

propriate models of promising solutions lead to good fitness estimates, even if only a small

proportion of candidate solutions is evaluated using the true fitness function.

Fitness inheritance has also been used for dealing with multi-objective optimization

problems. Reyes-Sierra and Coello Coello [49, 50] incorporated the concept of fitness in-

heritance into a multi-objective particle swarm optimizer and validated it in several test

problems of different degrees of difficulty. They generally reported lower computational

costs, while the quality of their results improved in higher dimensional spaces. This was in

contradiction with other studies (e.g., [17] as well as this chapter) that indicate that the per-

formance of the parents may not be a good predictor for their children’s fitness in sufficiently

complex problems, rendering fitness inheritance inappropriate under such circumstances.

2.4.2 Surrogates

A common approach to deal with expensive objective functions is to construct an approx-

imation function which is much cheaper to evaluate (computationally speaking). In order

to build such an approximation function which will be used to predict promising new solu-

tions, several sample points are required. The meta-model built under this scheme aims to

reduce the total number of (true objective function) evaluations performed, while producing

results of a reasonably good quality.

Evidently, the accuracy of the surrogate model depends on the number of samples pro-

vided (and their distribution) and on the approximation model adopted. Since throughout

the course of optimization the model will be used very frequently, it is very important that

the construction of such a model is computationally efficient [24]. The following are exam-

ples of the use of surrogates of different types.

Sano et al. [56] proposed a genetic algorithm for optimization of continuous noisy fitness

functions. In this approach, they utilized the history of the search to reduce the number of

fitness function evaluations. The fitness of a novel individual is estimated using the fitness

values of the other individuals as well as the sampled fitness values for it. So, as to increase

the number of individuals adopted for evaluation, they not only used the current generation

22 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

but also the whole history of the search. To utilize the history of the search, a stochastic

model of the fitness function is introduced, and the maximum likelihood technique is used

for estimation of the fitness function. They concluded that the proposed method outperforms

a conventional GA in noisy environments.

Branke et al. [9] suggested the use of local regression for estimation, taking the fitness

of neighboring individuals into account. Since in local regression it is very important to

determine which solutions belong to the neighborhood of a given individual, they studied

two different approaches for setting the value of the size of the local neighborhood (rela-

tive neighborhood and adaptive neighborhood). They concluded that local regression pro-

vides better estimations than previously proposed approaches. In more recent work [8], a

comparison between two estimation methods, interpolation and regression, is done. They

concluded that regression seems to be slightly preferable, particularly if only a very small

fraction of the individuals in the population is evaluated. Their experiments also show that

using fitness estimation, it is possible to either reach a better fitness level in a given time,

or to reach a desired fitness level much faster (using roughly half of the original number of

fitness function evaluations).

Ong et al. [41] proposed a local surrogate modeling algorithm for parallel evolutionary

optimization of computationally expensive problems. The proposed algorithm combines

hybrid evolutionary optimization techniques, radial basis functions, and trust-region frame-

works. The main idea of the proposed approach is to use an EA combined with a feasible

sequential quadratic programming solver. Each individual within an EA generation is used

as an initial solution for local search, based on Lamarckian learning. They employed a

trust-region framework to manage the interaction between the original objective and con-

straint functions and the computationally cheap surrogate models (which consist of radial

basis networks constructed by using data points in the neighborhood of the initial solution),

during local search. Extensive numerical studies are presented for some benchmark test

functions and an aerodynamic wing design problem. They show that the proposed frame-

work provides good designs on a limited computational budget. In more recent work, Ong

et al. [42] presented a study on the effects of uncertainty in the surrogate model, using what

they call Surrogate-Assisted Evolutionary Algorithms (SAEA). In particular, the focus was

on both the curse of uncertainty (impairments due to errors in the approximation) and bless-

ing of uncertainty (benefits of approximation errors). Several algorithms are tested, namelly

the Surrogated-Assisted Memetic Algorithm (SAMA) proposed in [41], a standard genetic

algorithm, a memetic algorithm (considered as the standard hybridization of a genetic al-

gorithm and the feasible sequential quadratic programming solver used in [41]), and the

SAMA-Perfect algorithm (which is the SAMA algorithm but using the exact fitness func-

tion as surrogate model), on three multi-modal benchmark problems (Ackley, Griewank and

Rastrigin). The conclusion was that approximation errors lead to convergence at false global

optima, but turns out to be beneficial in some cases, accelerating the evolutionary search.

Regis and Shoemakes [48] developed an approach for the optimization of continuous

costly functions that uses a space-filling experimental design and local function approx-

imation to reduce the number of function evaluations in an evolutionary algorithm. The

proposed approach estimates the objective function value of an offspring by means of a

function approximation model over the k-nearest previously evaluated points. The esti-

mated values are used to identify the most promising offspring per function evaluation. A

Symmetric Latin Hypercube Design (SLHD) is used to determine initial points for function

2.4 Fitness Approximation in Evolutionary Computation 23

evaluation, and for the construction of the function approximation models. They compared

the performance of an Evolution Strategy (ES) with local quadratic approximation, an ES

with local cubic radial basis function interpolation, an ES whose initial parent population

is obtained from a SLHD, and a conventional ES (in all cases, they used a (µ,λ)-ES with

uncorrelated mutations). The algorithms were tested on a groundwater bioremediation prob-

lem and on some benchmark test functions for global optimization (including Dixon-Szegö,

Rastrigin and Ackley). The obtained results (which include analysis of variance to provide

stronger and solid claims regarding the relative performance of the algorithms) suggest that

the approach that uses SLHDs together with local function approximations has potential

for success in enhancing EAs for computationally expensive real-world problems. Also,

the cubic radial basis function approach appears to be more promising than the quadratic

approximation approach on difficult higher-dimensional problems.

Lim et al. [35] presented a Trusted Evolutionary Algorithm (TEA) for solving opti-

mization problems with computationally expensive fitness functions. TEA is designed to

maintain good trustworthiness of the surrogate models in predicting fitness improvements

or controlling approximation errors throughout the evolutionary search. In this case, the

most interesting part was to predict search improvement as opposed to the quality of the

approximation, which is regarded as a secondary objective. TEA begins its search using

the canonical EA, with only exact function evaluations. During the canonical EA search,

the exact fitness values obtained are archived in a central database together with the design

variables (to be used later for constructing surrogate models). After some initial search

generations (specified by the user), the trust region approach takes place beginning from

the best solution provided by the canonical EA. The trust region approach uses a surrogate

model (radial basis neural networks) and contracts or expands the trust radius depending

on the ability of the approximation model in predicting fitness improvements, until the ter-

mination conditions are reached. An empirical study was performed on two highly multi-

modal benchmark functions commonly used in the global optimization literature (Ackley

and Griewank). Numerical comparisons to the canonical EA and the original trust region

line search framework are also reported. From the obtained results, the conclusion was that

TEA converges to near-optimum solutions more efficiently than the canonical evolutionary

algorithm.

Kriging

A more elaborate surrogate model that has been relatively popular in engineering, is the

so-called Gaussian Process Model, also known as Kriging [54]. This approach builds prob-

ability models through sample data and estimates the function values at every untested point

with a Gaussian distribution.

Ratle [46] presented a new approach based on a classical real-encoded genetic algorithm

for accelerating the convergence of evolutionary optimization methods. A reduction in the

number of fitness function calls was obtained by means of an approximate model of the

fitness landscape using Kriging interpolation. The author built a statistical model from a

small number of data points obtained during one or more generations of the evolutionary

method using the true fitness landscape. The model is updated each time a convergence

criterion is reached.

24 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.1: The GA-ANN algorithm that is proposed in [28]. Only if the approximate fitness

of an individual is better than the maximum fitness found in the last population,

its fitness is re-evaluated in order to find its real fitness value.

2.4.3 Artificial Neural Networks

In the last few years, artificial neural networks (ANNs), including multi-layer perceptrons [23]

and radial basis function networks [64] have also been employed to build approximate mod-

els for design optimization. Due to their universal approximation properties, ANNs can be

good fitness function estimators if provided with sufficient structural complexity and rich-

ness in their training data set. Next, some representative applications of the use of ANNs

for building approximate models will be briefly reviewed.

Khorsand et al. [28] investigated structural design by a hybrid of neural network and

finite element analysis. They used the neuro-estimation of the fitness value only when the

individual was not deemed to be highly fit (error in estimation may not be important). The

methodology used in [28] is presented in Figure 2.1 where r is considered as the maxi-

mum fitness of the individuals in the last generation. As with any other numerically driven

approximation method, the performance of ANNs is closely related to the quality of the

training data.

Jin et al. [25] investigated the convergence properties of an evolution strategy with neu-

ral network-based fitness evaluations. In this work, the concept of controlled evolution is

introduced, in which the evolution proceeds using not only the approximate fitness func-

tion value, but also the true fitness function value. They also introduce two possibilities to

combine the true with the approximate fitness function value: (1) the controlled individu-

als approach and (2) the controlled generation approach. Jin et al. defined “controlled” as

evaluated with the true fitness function. Both approaches were studied and some interesting

conclusions/recommendations for the correct use of such techniques are provided. A com-

prehensive survey of fitness approximation applied in evolutionary algorithms is presented

in [58].

2.4 Fitness Approximation in Evolutionary Computation 25

2.4.4 Final Remarks About Fitness Approximation

Lack of sufficient training data is the main problem in using most of the fitness approx-

imation models currently available and hence the failure to reach a model with sufficient

approximation accuracy. Since evaluation of the original fitness function is very time con-

suming and/or expensive, the approximate model may be of low fidelity and may even in-

troduce false optima. Furthermore, if the training data does not cover all the domain range,

large errors may occur due to extrapolation. Errors may also occur when the set of training

points is not sufficiently dense and uniform. In such situations, a combination of methods

may be more desirable. For example, Ong et al. [41] combined radial basis functions with

transductive inference to generate local surrogate models.

Alternatively, if individuals in a population can be clustered into several groups as

in [30], then only the individual that represents its cluster can be evaluated. The fitness

value of other individuals in the same cluster will be estimated from the representative in-

dividual based on a distance measure. This is termed fitness imitation in contrast to fitness

inheritance [24]. The idea of fitness imitation has been extended and more sophisticated

estimation methods have been developed in [7]. A similarity based model is introduced in

[18] and is applied to constrained and unconstrained optimization problems.

In multi-objective optimization problems (MOOP), the complexity of the problem is

normally higher, compared to that of single-objective optimization problems (SOOP) [11].

In general, although the fitness approximation approaches used in SOOP can be simply ex-

tended and adapted for MOOP, such adaptation may require more elaborate mechanisms.

One example of this is constraint-handling.4 It is well-known that in real-world optimiza-

tion problems there are normally constraints of different types (e.g., related to the geometry

of structural elements, to completion times, etc.) that must be satisfied for a solution to be

acceptable. Traditionally, penalty functions have been used with EAs to handle constraints

in SOOP [10]. However, because of the several problems associated to penalty functions

(e.g., the definition of appropriate penalty values is normally a difficult task that has a se-

rious impact on the performance of the EA), some researchers have proposed alternative

constraint-handling approaches that require less critical parameters and perform well across

a variety of problems (see for example [10, 38, 53]). However, when dealing with MOOPs,

many of these constraint-handling techniques cannot be used in a straightforward manner,

since in this case, the best trade-offs among the objectives are always located in the bound-

ary between the feasible and the feasible region. This requires the development of different

approaches specially tailored for MOOPs (see for example [59, 63]). A similar problem oc-

curs when attempting to migrate single-objective fitness approximation models to MOOPs.

For more details on this topic, see [57].

While the above methods aim to reduce computational cost by approximating the fit-

ness function, the prevalent problems with interpolation in rough surfaces remains. If the

assumption of smooth continuity is not valid, interpolation may even yield values that are

not physically realizable. Furthermore, we may be blinded to the optimal solutions using

interpolation as interpolation assumes a pattern of behavior that may not be valid around

optimal peaks. The next section addresses this problem by introducing the concept of infor-

4Although constraint-handling techniques are very important in real-world optimization problems, their dis-

cussion is beyond the scope of this chapter, due to space limitations. Interested readers are referred to other

references for more information on this topic (see for example [38, 52]).

26 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

mation granulation.

2.5 Adaptive Fuzzy Fitness Granulation

Fuzzy granulation of information is a vehicle for handling information, as well as a lack of

it (uncertainty), at a level of coarseness that can solve problems appropriately and efficiently

[13]. In 1979, the concept of fuzzy information granulation was proposed by Zadeh [65] as

a technique by which a class of points (objects) are partitioned into granules, with a granule

being a clump of objects drawn together by indistinguishability, similarity, or functionality.

The fuzziness of granules and their attributes is characteristic of the ways by which human

concepts and reasoning are formed, organized and manipulated. The concept of a granule

is more general than that of a cluster, potentially giving rise to several conceptual structures

in various fields of science as well as mathematics.

In this chapter, with a view to reducing computational cost, the concept of fitness gran-

ulation is applied to exploit the natural tolerance of EAs in fitness function computations.

Nature’s survival of the fittest is not about exact measures of fitness; rather it is about rank-

ings among competing peers. By exploiting this natural tolerance for imprecision, optimiza-

tion performance can be preserved by computing fitness only selectively and only to keep

this ranking among individuals in a given population. Also, fitness is not interpolated or

estimated; rather, the similarity and indistinguishability among real solutions is exploited.

In the proposed algorithm, an adaptive pool of solutions (fuzzy granules) with an ex-

actly computed fitness function is maintained. If a new individual is sufficiently similar to

a known fuzzy granule [65], then that granules’ fitness is used instead as a crude estimate.

Otherwise, that individual is added to the pool as a new fuzzy granule. In this fashion,

regardless of the competitions’ outcome, the fitness of the new individual is always a phys-

ically realizable one, even if it is a crude estimate and not an exact measurement. The pool

size as well as each granules’ radius of influence is adaptive and will grow/shrink depending

on the utility of each granule and the overall population fitness. To encourage fewer func-

tion evaluations, each granule’s radius of influence is initially large and gradually shrinks

at later stages of the evolutionary process. This encourages more exact fitness evaluations

when competition is fierce among more similar and converging solutions. Furthermore, to

prevent the pool from growing too large, not used granules are gradually replaced by new

granules, once the pool reaches a certain maturity.

2.5.1 Algorithm Structure

Given the general overview in the preceding section, the concrete steps of the algorithm are

as follows:

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . ,x

1
t } of design

variable, where, more generally, xi
j = {xi

j,1, xi
j,2, . . . ,x

i
j,r, . . . , xi

j,m} is the jth parameter

individual in the ith generation, xi
j,r ∈ IR the rth parameter of xi

j, m is the number of design

variables and t is the population size.

Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ ℜm, σk ∈ ℜ, Lk ∈ ℜ, k = 1, . . . , l}. G is initially empty (i.e., l = 0). Ck is an m-

dimensional vector of centers, σk is the width of membership function (WMF) of the kth

2.5 Adaptive Fuzzy Fitness Granulation 27

Figure 2.2: A number of gaussian granules with different widths in a 2-D solution space.

Once a new individual is sufficiently similar to a granule in the granule pool,

then that granules’ fitness is used instead as a crude estimate. Otherwise, that

individual is added to the pool as a new fuzzy granule. Each granules’ radius

of influence is determined based on equation (2.4).

fuzzy granule, and Lk is the granule’s life index. A number of granules with different widths

are shown in Figure 2.2.

Step 3: Choose the phenotype of first chromosome (x1
1 = {x1

1,1, x1
1,2, . . . , x1

1,r, . . . , x1
1,m})

as the center of the first granule (C1 = {c1,1, c1,2, . . . ,c1,r, . . . , c1,m} = x1
1).

Step 4: Define the membership µk,r of each xi
j,r to each granule member by a Gaussian

similarity neighborhood function according to

µk,r

(

xi
j,r

)

= exp

(

−
(

xi
j,r − ck,r

)2

(σk)
2

)

, k = 1,2, . . . , l , (2.3)

where l is the number of fuzzy granules.

Remark: σk is the distance measurement parameter that controls the degree of similarity

between two individuals. Like in [14], σk is defined based on equation (2.4). According to

this definition, the granules shrink or enlarge in reverse proportion to their fitness:

σk = γ
1

(

eF(Ck)
)β

, (2.4)

where β> 0 is an emphasis operator and γ is a proportionality constant. The problem arising

here is how to determine the parameters β and γ as design parameters. The fact is that these

two parameters are problem dependent and, in practice, a number of trials is needed to adjust

these parameters. This trial is based on a simple rule with respect to the acceleration of the

parameter optimization procedure: high speed needs to have enlargement in the granule

spread and, as a consequence of this, less accuracy is obtained in the fitness approximation,

and viceversa. To deal with this rule, a fuzzy controller is presented in [14].

Step 5: Compute the average similarity of every new design parameter xi
j = {xi

j,1, xi
j,2,

. . . ,xi
j,r, . . . , xi

j,m} to each granule Gk using equation (2.5)

28 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

µ j,k =

m

∑
r=1

µk,r

(

xi
j,r

)

m
(2.5)

Step 6: Either calculate the exact fitness function of xi
j or estimate the fitness function

value by associating it to one of the granules in the pool in case there is a granule in the pool

with higher similarity to xi
j than a predefined threshold, i.e.

f
(

xi
j

)

=







f (Ck) if max
k∈{1,2,...,l}

{µ j,k}> θi ,

f
(

xi
j

)

otherwise.
(2.6)

where f (Cx) is the fitness function value of the fuzzy granule, f (xi
j) is the real fitness calcu-

lation of the individual, θi =α(max{ f (xi−1
1), f (xi−1

2), . . . , f (xi−1
t)}/ f

i−1
), K = argmax{µ j,k}

when k ∈ {1,2, . . . , l}, f
i
= ∑i

j=1 f (xi
j)/t and α > 0 is a proportionality constant that is usu-

ally set at 0.9 unless otherwise indicated. The threshold θi increases as the best individual’s

fitness at generation i increases. As the population matures and reaches higher fitness val-

ues (i.e., while converging more), the algorithm becomes more selective and uses exact

fitness calculations more often. Therefore, with this technique we can utilize the previous

computational efforts during previous generations. Alternatively, if

max
k∈{1,2,...,l}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 5 to 7.

Step 8: Select parents using a suitable selection operator and apply the genetic operators

of recombination and mutation to create a new generation.

Step 9: When termination/evolution control criteria are not met, then update σk using

equation (2.4) and repeat Steps 5 to 9.

In [13] and [3], additional details on the convergence speed of the algorithm on a se-

ries of mathematical testbeds are provided along with a simple example to illustrate the

competitive granule pool update.

2.5.2 How to control the length of the granule pool?

As the evolutionary procedures are applied, it is inevitable that new granules are generated

and added to the pool. Depending on the complexity of the problem, the size of this pool

can be excessive and become a computational burden itself. To prevent such unnecessary

computational effort, a forgetting factor is introduced in order to appropriately decrease

the size of the pool. In other words, it is better to remove granules that do not win new

individuals, thereby producing a bias against individuals that have low fitness and were

likely produced by a failed mutation attempt. Hence, Lk is initially set to N and subsequently

updated as below,

Lk =

{

Lk +M if k = K ,

Lk otherwise ,
(2.7)

2.6 Numerical results 29

where M is the life reward of the granule and K is the index of the winning granule for

each individual at generation i. At each table update, only the NG granules with the highest

Lk index are kept, and the others are discarded. In [16], an example has been provided to

illustrate the competitive granule pool update law. Adding a new granule to the granule pool

and assigning a life index to it, is a simple way of controlling the size of the granule pool,

since the granules with the lowest life index will be removed from the pool. However, it

may happen that the new granule is removed, even though it was just inserted into the pool.

In order to prevent this, the pool is split into two parts with sizes εNG and (1− ε)NG. The

first part is a FIFO (First In, First Out) queue and new granules are added to this part. If it

grows above εNG, then the top of the queue is moved to the other part. Removal from the

pool takes place only in the (1−ε)NG part. In this way, new granules have a good chance to

survive a number of steps. In all of the simulations that are conducted here, ε is set at 0.1.

The distance measurement parameter is completely influenced by the granule enlarge-

ment/shrinkage in the widths of the produced membership functions. As in [16], the com-

bined effect of granule enlargement/shrinkage is in accordance with the granule fitness and

it requires the fine-tuning of two parameters, namely β and γ. These parameters are problem

dependent and it seems critical to have a procedure to deal with this difficulty. In [14] and

[15], an auto-tuning strategy for determining the width of membership functions is presented

which removes the need of exact parameter determination, without a negative influence on

the convergence speed.

2.6 Numerical results

To illustrate the efficacy of the proposed granulation algorithm, the result of applying it to

the problems introduced in Section 2.2 are studied and analyzed in the two following sec-

tions. The commercial FEA software ANSYS [5] is used during the analysis and numerical

simulation study.

The GA routines utilize initially random populations, binary-coded chromosomes, single-

point crossover for the first three problems and 15-point crossover for the piezoelectric ac-

tuator design problem, mutation, fitness scaling, and an elitist stochastic universal sampling

selection strategy. Crossover rate PXOV ER = 1, PMUTAT ION = 0.01 and the population size

is set at 20. However, due to the number of parameters and complexity of the structural

problems, the number of generations is set to 50 for the first three problems and 600 for the

piezoelectric actuator design problem. These settings were determined during several trial

runs to reflect the best performing set of parameters for the GA. Finally, the chromosome

length varies depending on the number of variables in a given problem but each variable is

still allocated 8 bits.

For performing the FES, a fitness and associated reliability value are assigned to each

new individual. The reliability value, T , varies between 0 and 1 and depends on two factors:

first is the reliability of parents, and second is how close parents and children are in the

solution space, as explained in equation (2.2). Also, as mentioned in [55], T = 0.7 is used

for the threshold as we empirically found that it generally produces the best results. The

parameters of the GA-ANN are the same as in the GA alone. In the GA-ANN approach

for solving optimization problems, a two-layer neural network is used, having as input the

design variables and as outputs the fitness values.

30 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Furthermore, due to the stochastic nature of EAs, each of the simulations was repeated

ten times, and a paired Mann-Whitney U test was performed except for the last optimization

problem in which, for each algorithm, it was performed only once, due to the running time

needed. The significance level α represents the maximum tolerable risk of incorrectly reject-

ing the null hypothesis H0, indicating that the mean of the 1st population is not significantly

different from the mean of the 2nd population. The p-value or the observed significance

level of a statistical test is the smallest value of α for which H0 can be rejected. If the p-

value is less than the pre-assigned significance level α, then the null hypothesis is rejected.

Here, the significance level α was assigned, and the p-value was calculated for each of the

following applications.

The results are presented in Tables 2.1, 2.2, 2.3 and 2.5, in which FFE stands for the

number of fitness function evaluations needed to perform the optimization task and the train-

ing data column presents the number of initial input/output pairs needed in order to build up

the approximation model. Since the most computationally expensive part of an evolutionary

algorithm is usually, by far, its fitness evaluation, the convergence time improvement of dif-

ferent algorithms, compared to the standard GA, can be estimated in terms of the number of

fitness evaluations. So, the time improvement percentage column is calculated as one minus

the difference between the sum of FFE and training data divided by the number of FFE of

the standard algorithm, i.e., a GA, multiplied by 100.

2.6.1 3-Layer composite beam

A 3-layer composite beam has been modeled numerically by using the ANSYS program.

The composite layout are the design variables that change in the region [0 - 180]. The

objective here is to raise the first natural frequency by appropriately choosing 2 composite

layers’ angles. In this example, the Young’s modulus [19] is EX = 210 GPa, EY = 25 GPa,

EZ = 25 GPa, GXY = GYZ = GXZ = 30 GPa, Poisson’s ratio ν = 0.2 and density ρ =

2100 kg/m3. There are two design variables (two degrees of freedom) for this optimization

problem each varying between 0 and 180. For this case, a 2-100-1 ANN architecture is

consequently chosen and used for the optimization runs. The proposed algorithm (called

AFFG, for adaptive fuzzy fitness granulation) and other methods are compared in Table 2.1.

Results indicate that while there is not a significant statistical difference between the three

algorithms in terms of solution fitness, i.e., rigidity of the beam, the time savings provided

by the proposed method is much higher than that of the GA-ANN. In particular, the pro-

posed AFFG algorithm finds better solutions on the average with less computational time

as compared with the GA-ANN. Also, while FES seems to have found better solutions, the

proposed GA-AFFG used less than half as many evaluations.

2.6.2 Airplane wing

Figure 2.3(a) shows the initial design of an airplane wing. The wing is of uniform con-

figuration along its length, and its cross-sectional area is defined to be a straight line and

a spline. It is held fixed to the body of the airplane at one end and hangs up freely at the

other. The objective here is to maximize the wing’s first natural frequency by appropriately

choosing three key points of the spline. The material properties are: Young’s modulus =

261.820 GPa, density ρ = 11031 kg/m3, Poisson’s ratio ν = 0.3.

2.6 Numerical results 31

Table 2.1: Performance of the optimization methods (average of 10 runs) for the 3-layer

composite beam, α = 0.9, β = 0.1, γ = 30, M = 5, NG = 250, T = 0.7.

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 Not Needed 19.3722

FES 228.1 Not Needed 77.19 19.369 0.0211

GA-ANN 155.9 100 74.41 19.3551 0.0026

GA-AFFG 97.5 Not Needed 90.25 19.3681 0.0355

Figure 2.3: Airplane wing: (a) initial shape, (b) GA optimized shape, and (c) GA-AFFG.

The optimized shape found by a simple GA is shown in Figure 2.3(b) and that found by

GA-AFFG is shown in Figure 2.3(c). A 6-100-1 architecture is chosen for the ANN used as

fitness approximator. Table 2.2 illustrates that while the GA-ANN finds inferior solutions as

compared with the GA, the use of the ANN significantly reduces computational time. The

application of AFFG shows an improvement in the search quality while maintaining a low

computational cost. Specifically, the average 10-run performance of the AFFG solutions

is higher than that of any of the competing algorithms including the GA, FES and GA-

ANN. Furthermore, while the Mann-Whitney U test confirms that the proposed algorithm

solutions are at least as good as those produced by the GA, the proposed algorithm is over

82% faster.

32 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Table 2.2: Performance of the optimization methods (average of 10 runs) for Airplane wing,

α = 0.9, β = 0.5, γ = 1, M = 5, NG = 250, T = 0.7 .

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 6.0006

FES 481.6 51.84 5.9801 0.9698

GA-ANN 172.1 100 72.79 5.9386 0.4274

GA-AFFG 173.5 82.65 6.0527 0.3075

Table 2.3: Performance of the optimization methods (average of 10 runs) for the 2D truss,

α = 0.9, β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 12.1052

FES 1000 0 11.8726 0.0058

GA-ANN 293 100 60.66 11.8697 0.0257

GA-AFFG 570.4 42.96 12.1160 0.9097

2.6.3 2D truss frame

A typical truss designed by an engineer is illustrated in Figure 2.4(a). The objective (fitness)

here is to raise the structure’s first natural frequency to reduce the vibration domain and to

prevent the resonance phenomenon (in dynamic response) of the structure by appropriately

choosing the 18 key point locations (our design variables) as illustrated in Figure 2.3(a).

In this benchmark, isotropic material properties are assumed (Young’s modulus E = 210

GPa, Poisson’s ratio ν = 0.3 and density ρ = 7800 kg/m3). The optimized shapes produced

by the GA and the new proposed method AFFG are shown in Figures 2.4(b) and 2.4(c),

respectively. The 36-100-1 ANN architecture is chosen and used for the optimization runs.

The search begins with an initial population. The maximum fitness in the initial pop-

ulation is nearly 9.32. Over several generations, the fitness gradually evolves to a higher

value of 11.902. Figure 2.5 shows a plot of best, average and worst fitness vs. generation

number for one run of our GA-AFFG. This performance curve shows the learning activity

or adaptation associated with the algorithm. The total number of generations is 50. For a

population size of twenty, this requires 1000 (50×20) fitness evaluations for the GA while

the proposed GA-AFFG required only 570.4 fitness evaluations. Figure 2.6 shows the plot

of the number of FEA evaluations vs. generation number corresponding to one run [13].

2.6.4 Voltage and pattern design of piezoelectric actuator

Piezoelectric materials have coupled mechanical and electrical properties making them able

to generate a voltage when subjected to a force or deformation (this is termed as the direct

piezoelectric effect). Conversely, they exhibit mechanical deformation when subjected to an

applied electric field (this is called the converse piezoelectric effect) [3]. Various applica-

tions of piezoelectric actuators/sensors have appeared in the literature. Lin et al. [36] inves-

2.6 Numerical results 33

Figure 2.4: 2D truss frame: (a) initial configuration, (b) GA optimized shape, and (c) GA-

AFFG optimized shape.

tigated the modeling and vibration control of a smart beam by using piezoelectric damping-

modal actuators/sensors. They presented theoretical formulations based on damping-modal

actuators/sensors and numerical solutions for the analysis of a laminated composite beam

with integrated sensors and actuators. A proof-of-concept design of an inchworm-type

piezoelectric actuator of large displacement and force for shape and vibration control of

adaptive truss structures is proposed by Li et al. in [33]. The applications of such actuators

include smart or adaptive structural systems for the car and aerospace industries.

A fiber composite plate with initial imperfections and under in-plane compressive loads

is studied by Adali et al. [2] with a view towards minimizing its deflection and optimizing

its stacking sequence by means of the piezoelectric actuators and the fiber orientations.

Krommer [31] studied a method to control the deformation of a sub-section of a beam.

His intention was to apply a distributed control by means of self-stresses within the sub-

section to keep the sub-section in its non-deformed state. In practical applications such as

deformation control of conformal antennas, this strategy is highly valuable.

Global optimization algorithms [62] along with a finite element formulation are widely

used in shape control. For instance in [34], a computational intelligence based optimization

algorithm along with a modified finite element formulation is used to deal with the shape

control of functionally graded material (FGM) plates that contain piezoelectric sensor and

actuator patches. In this study, an optimal voltage distribution or a gain control matrix are

used as design variables for the shape control of smart structures. Numerical simulations

have been successfully carried out on the shape control of the FGM plates by optimizing the

voltage distribution for the open loop shape control or gain values for the closed loop shape

control. A finite element formulation with non-rectangular shaped actuators for laminated

34 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.5: Plot of generation number vs. fitness value for the 2D truss frame using GA-

AFFG: best (circle), average (cross) and worst (asterisk) individuals at each

generation.

smart composite structure is studied in [40]. For smart cantilever plates, the actuated deflec-

tions are measured and are used to validate the present formulation. They also investigated

the effect of actuator pattern on the optimum values of the applied voltages and the shape

match factors. Numerical results shown that the actuator patterns may have an important

influence on the values of the optimum voltages applied to each individual actuator and the

final shape match factor.

Piezoelectric equations (constitutive equations)

In this study, the assumption is that the thermal effect is negligible. The piezoelectric con-

stitutive relationships describe how two piezoelectric mechanical and electrical quantities

(stress, strain, electric displacement, and electric field) interact and it is expressed by the

direct and the converse piezoelectric equations respectively [6]:

{D}= [e]{ε}+[ε]{E} , (2.8)

{σ}= [Q]{ε}+[e]T{E} , (2.9)

2.6 Numerical results 35

Figure 2.6: Plot of the generation number vs. number of FEA evaluations for the 2D truss

frame in a single run using GA-AFFG.

where {σ} is the stress vector, [Q] is the elastic stiffness matrix, {ε} is the strain vector, [e]
is the piezoelectric constant matrix, {E} = −∇ϕ is the electric field vector. Also, ϕ is the

electrical potential, {D} is the electric displacement vector and [ε] is the permittivity coeffi-

cient matrix. Equations (2.8) and (2.9) describe the electromechanical coupling. Assuming

that a laminated beam consists of a number of layers and each layer possesses a plane of

material symmetrically parallel to the x-y plane, the constitutive equations for the kth layer

can be written as [29]:

{

D1

D3

}

k

=

[

0 e15

e31 0

]

k

×
{

ε1

ε5

}

k

+

[

ε11 0

0 ε33

]

k

×
{

E1

E3

}

k

(2.10)

{

ε1

ε3

}

k

=

[

Q11 0

0 Q55

]

k

×
{

ε1

ε5

}

k

+

[

0 ε31

ε15 0

]

k

×
{

E1

E3

}

k

(2.11)

where

Q11 =
E11

1− v12v21
,Q55 = G13

and are the reduced elastic constants of the kth layer, E11 is the Young’s modulus and G13

is the shear modulus. The piezoelectric constant matrix [e] can be expressed in terms of the

piezoelectric strain [d] as:

[e] = [d][Q]

36 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

where

[d] =

[

0 d15

d31 0

]

Using the above piezoelectricity analysis and formulation, finite element model (FEM)

of piezoelectric patches and metal plate [45] was built by ANSYS [5]. Also, a small deflec-

tion and thin plate theory are assumed for the FEM of the plate.

To validate the software, a clamped free aluminum plate with 4 piezoelectric patches

is modeled and the results are compared with the experimental model of reference [12]. A

close agreement between our model and our experimental results is observed. Also, in order

to achieve an acceptable mesh density, mesh sensitivity 5 is performed.

Piezoelectric design for static shape control

The shape control problem considered here is to find the optimal actuator pattern design

variable P and exiting voltage vector V as design variables. The (quasi-) static shape control

problem can be defined, in the context of an optimization formulation, as follows:

Find x = [P,V]T to minimize:

f (x) =
Nx

∑
j=1

Ny

∑
i=1

∣

∣

∣
dd

i, j −d
f
i, j

∣

∣

∣

∣

∣

∣
maxi, j

(

dd
i, j

)∣

∣

∣

/(Nx ×Ny) . (2.12)

x is the decision variable with two components: i) the pattern variable vector P, and

ii) the applied voltage variable vector V . Here, f (x) is the objective function. P is the

distribution of active piezoelectric actuator material (pattern variable) whereas the voltage

variables in vector V are the electrical potentials applied across the thickness direction of

each actuator. The objective function f (x) in equation (2.12) is a weighted sum of all

the absolute differences between the desired and designed shapes at all nodes. dd
i, j and

d
f
i, j are the desired and designed (calculated by the FE model) transversal displacements

of the (i, j)-location, respectively. max(dd
i, j) is the maximum displacement in the desired

structural shape. As the displacement is small here, there is no need to consider stress or

strain constraint variables for the shape control problem.

Model description

A cantilever plate clamped at its left edge and subjected to a non-applied mechanical load is

assumed here. The plate has a length of 154 mm; width of 48 mm and consists of one layer

of 0.5 mm in thickness. The piezoelectric actuators (thickness of 0.3 mm each) are attached

to the top surfaces of the plate (Figure 2.7). The desired pre-defined surface [12] is defined

as:

dd
i, j =

(

1.91x2 +0.88xy+0.19x
)

×10−4 . (2.13)

5Mesh sensitivity is performed to reduce the number of elements and nodes in the mesh while ensuring the

accuracy of the finite element solution [27].

2.6 Numerical results 37

Table 2.4: Material properties for the PX5-N piezoelectric material [12].

CE
11(N m−2) 13.11×1010 d15(m V−1) 515×10−12

CE
12(N m−2) 7.984×1010 d31(m V−1) −215×10−12

CE
13(N m−2) 8.439×1010 d33(m V−1) 500×10−12

CE
33(N m−2) 12.31×1010 εt

11/ε0 1800

CE
44(N m−2) 2.564×1010 εt

33/ε0 2100

CE
66(N m−2) 2.564×1010 ρ(kg m−3) 7800

Figure 2.7: Geometrical model of the piezoelectric patch adopted here.

The piezoelectric electro-mechanical properties shown in Table 2.4 according to PX5-

N from Philips Components. After a careful mesh sensitivity analysis, a FEM is built as

illustrated in Figure 2.8.

For this SD and optimization problem, there are 200 design variables. Half of these

Figure 2.8: Finite element model built by ANSYS.

38 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.9: Generation number vs. fitness for the piezoelectric actuator using our proposed

GA-AFFG for a single run: best (circle), average (cross) and worst (asterisk)

of individuals at each generation.

Table 2.5: Piezoelectric actuator performance of the optimization methods, α = 0.9, β =

0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .

FFEs Training data Time Improved (%) Error (%)

GA 12000 7.313

FES 12000 0 12.82

GA-ANN 2617 5000 36.52 8.093

GA-AFFG 5066 Not needed 57.64 7.141

design variables belong to actuation voltage of piezoelectric patches which vary between

-10 and 20 V and the rest of the design variables are Boolean, indicating whether or not

the voltage should be applied to the piezoelectric patches. When the ith(i = 1, . . . ,100)
piezoelectric pattern variable is zero, the piezoelectric patch is not built so that there is no

actuation voltage, and viceversa. Figure 2.9 shows the graph of best, average and worst

fitness vs. generation number and Figure 2.10 shows the number of FEA evaluations vs.

generation number for a single GA-AFFG run while Table 2.4 presents the results of the

four optimization algorithms corresponding to one run.

2.7 Analysis of results 39

Figure 2.10: Generation number vs. number of FEA evaluations, for the piezoelectric actu-

ator, using our proposed GA-AFFG for a single run.

2.7 Analysis of results

Tables 2.1, 2.2, 2.3 and 2.5, illustrate the performance of the proposed GA-AFFG method

in comparison with a GA, FES and GA-ANN [13] in terms of computational efficiency and

performance for the 3-layer composite beam, the airplane wing, and the 2D truss design

problems as well as for the piezoelectric actuator problem. Due to the stochastic nature of

the GA, the first three design simulations are repeated 10 times and a statistical analysis

is performed. However, for the piezoelectic actuator we could not run the GA that many

times, because of its high computational cost.

The second column in these tables makes a comparison of the three algorithms in terms

of the number of FEA evaluations as compared to those of the GA, while the fourth column

makes a comparison in terms of performance. Results indicate that our proposed GA-AFFG

finds statistically equivalent solutions by using more than 90%, 82%, 42% and 57% fewer

finite element evaluations. The GA-ANN also significantly reduces the number of FEA

evaluations, but its average performance is inferior when compared with our proposed GA-

AFFG due to the ANNs approximation error. It must be noted that the improvement in time

by GA-ANN takes into account the time spent on constructing the training data set. It must

be noted that the GA-ANN’s improved time includes the number of initial training data.

For the piezoelectric actuator design problem, Table 2.5 illustrates a comparison of the

GA, FES and GA-ANN [3] with respect to our proposed GA-AFFG in terms of computa-

40 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Table 2.6: A Mann-Whitney U test of the number of real fitness calculations for the 3-layer

composite beam (10 runs).

Simulation results

3-layer composite beam Mean Var p-Value

FES 228.1 4601.2 6.39×10−05

GA-ANN 155.9 511.9 6.34×10−05

GA-AFFG 97.5 406.7 6.39×10−05

Table 2.7: A Mann-Whitney U test of the number of real fitness calculations for the airplane

wing (10 runs).

Simulation results

Airplane wing Mean Var p-Value

FES 481.6 38648 6.39×10−05

GA-ANN 172.1 6392.1 6.39×10−05

GA-AFFG 173.5 1600.3 6.39×10−05

tional efficiency and performance. The second column of this table makes a comparison

of the four algorithms in terms of the number of FEA evaluations as compared with a GA,

while the fifth column makes a comparison in terms of the quality of the optimal solutions.

Results indicate that GA-AFFG finds at least equivalent solutions by using 57% fewer fi-

nite element evaluations as compared to GA. Also, when compared with the GA-ANN, the

proposed algorithm finds better solutions while being more computationally efficient. The

main difference here is ANN’s need for pre-training. Trying various sizes of initial training

sets and considering the 200 design parameters, the ANN required at least 5000 training

data pairs for comparable performance, see Table 2.5.

Overall, when compared with a GA, the two sets of applications indicate that FES, GA-

ANN and GA-AFFG improve the computational efficiency of their problem by reducing

the number of exact fitness function evaluations. However, the neuro-approximation as well

as fitness inheritance fail with a growing size of the input-output space. Consequently, the

utility of AFFG becomes more significant in larger and more complex design problems.

Furthermore, our statistical analysis confirms that fitness inheritance is more comparable in

terms of performance when the size of the search space is smaller (Tables 2.1 and 2.2), but

its performance deteriorates as the complexity of the problem increases (Tables 2.3 and 2.5).

A comparison of the number of exact fitness function evaluations in terms of mean

and variance that presents the improved computational time is presented in Tables 2.6, 2.7

and 2.8 for the first three mechanical optimization problems described before. A Mann-

Whitney U test is also performed to study the significance of lower computation cost. Since

the fourth optimization problem (piezoelectic actuator design) could not be repeated due to

the its FEA time consuming nature, a Mann-Whitney U test could not be performed in that

case.

2.8 Conclusions 41

Table 2.8: A Mann-Whitney U test of the number of real fitness calculations for the 2D truss

(10 runs).

Simulation results

2D truss Mean Var p-Value

FES 100 0 Not available

GA-ANN 293 2394.2 6.39×10−05

GA-AFFG 570.4 18477 6.39×10−05

2.8 Conclusions

In this chapter, we have proposed a systematic and robust methodology for solving com-

plex structural design and optimization problems. The proposed methodology relies on the

use of finite element analysis and adaptive fuzzy fitness granulation. As we saw, adaptive

fuzzy fitness granulation provides a method to selectively reduce the number of actual fit-

ness function evaluations performed by considering the similarity/indistinguishability of an

individual to a pool of fuzzy information granules. Since the proposed approach does not

use approximation or online training, it is not caught in the pitfalls of such techniques such

as false peaks, large approximation error due to extrapolation, and time consuming online

training.

The effectiveness and functionality of the proposed approach was verified through four

structural design problems. In the first three of them, the objective was to increase the

first natural frequency of the structure. In the last problem, a piezoelectric actuator was

considered for the purposes of shape control and/or active control for correction of static

deformations. The design variables were the voltage and the actuator locations and the

performance index was considered as the square root of the error between the nodal pre-

defined displacement and the observed displacement.

References

[1] Abe, A., Kamegawa, T., and Nakajima, Y. (2003). Optimization of construction of tire

reinforcement by genetic algorithm. Optimization and Engineering, 5(1):77–92.

[2] Adali, S., Sadek, I., Jr., J. B., and Sloss, J. (2005). Optimization of composite plates with

piezoelectric stiffener-actuators under in-plane compressive loads. Composite Structures

Journal, 71:293–301.

[3] Akbarzadeh-T, M., Davarynejad, M., and Pariz, N. (2008). Adaptive fuzzy fitness gran-

ulation for evolutionary optimization. International Journal of Approximate Reasoning,

49(3):523–538.

[4] Alba, E. and Tomassini, M. (2002). Parallelism and Evolutionary Algorithms. IEEE

Transactions on Evolutionary Computation, 6(5):443–462.

[5] Ansys, I. (2004). ANSYS users manual. ANSYS Inc., Southpointe, 275.

42 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[6] Aryana, F., Bahai, H., Mirzaeifar, R., and Yeilaghi, A. (2007). Modification of dynamic

characteristics of FGM plates with integrated piezoelectric layers using first-and second-

order approximations. International Journal for Numerical Methods in Engineering,

70(12):1409–1429.

[7] Bhattacharya, M. and Lu, G. (2003). A dynamic approximate fitness based hybrid ea for

optimization problems. In Proceedings of IEEE Congress on Evolutionary Computation,

pages 1879–1886.

[8] Branke, J. and Schmidt, C. (2005). Fast convergence by means of fitness estimation.

Soft Computing Journal, 9(1):13–20.

[9] Branke, J., Schmidt, C., and Schmeck, H. (2001). Efficient fitness estimation in noisy

environment. In et al, L. S., editor, Proceedings of Genetic and Evolutionary Computa-

tion Conference (GECCO), pages 243–250, San Francisco, CA. Morgan Kaufmann.

[10] Coello, C. A. C. (2002). Theoretical and Numerical Constraint Handling Techniques

used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods

in Applied Mechanics and Engineering, 191(11-12):1245–1287.

[11] Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition.

ISBN 978-0-387-33254-3.

[12] da Mota Silva, S., Ribeiro, R., Rodrigues, J. D., Vaz, M. A. P., and Monteiro, J. M.

(2004). The application of genetic algorithms for shape control with piezoelectric

patches-an experimental comparison. Smart Materials and Structures, 13:220–226.

[13] Davarynejad, M. (2007). Fuzzy Fitness Granulation in Evolutionary Algorithms for

Complex Optimization. Master’s thesis, Ferdowsi University of Mashhad.

[14] Davarynejad, M., Ahn, C. W., Vrancken, J. L. M., van den Berg, J., and Coello, C.

A. C. (2010). Evolutionary hidden information detection by granulation-based fitness

approximation. Applied Soft Computing, 10(3):719–729.

[15] Davarynejad, M., Akbarzadeh-T, M., and Coello, C. A. C. (2008). Auto-tuning fuzzy

granulation for evolutionary optimization. In CEC 2008, IEEE World Congress on Evo-

lutionary Computation, pages 3572–3579, Hong Kong.

[16] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general

framework for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE

Congress on Evolutionary Computation, pages 951–956. IEEE.

[17] Ducheyne, E. I., De Baets, B., and De Wulf, R. (2003). Is Fitness Inheritance Use-

ful for Real-World Applications? In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb,

K., and Thiele, L., editors, Evolutionary Multi-Criterion Optimization. Second Interna-

tional Conference, EMO 2003, pages 31–42, Faro, Portugal. Springer. Lecture Notes in

Computer Science. Volume 2632.

[18] Fonseca, L. G. and Barbosa, H. J. C. (2009). A similarity-based surrogate model for

enhanced performance in genetic algorithms. OPSEARCH, 46:89107.

2.8 Conclusions 43

[19] Freudenberger, J., Gllner, J., Heilmaier, M., Mook, G., Saage, H., Srivastava, V., and

Wendt, U. (2009). Materials science and engineering. In Grote, K. H. and Antonsson,

E. K., editors, Springer Handbook of Mechanical Engineering. Springer Berlin Heidel-

berg.

[20] Furuya, H. and Haftka, R. T. (1993). Locating actuators for vibration suppression on

space trusses by genetic algorithms. ASME-PUBLICATIONS-AD, 38.

[21] Giger, M. and Ermanni, P. (2005). Development of CFRP racing motorcycle rims

using a heuristic evolutionary algorithm approach. Structural and Multidisciplinary Op-

timization, 30(1):54–65.

[22] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Co., Reading, Massachusetts.

[23] Hong, Y.-S., H.Lee, and Tahk, M.-J. (2003). Acceleration of the convergence speed of

evolutionary algorithms using multi-layer neural networks. Engineering Optimization,

35(1):91–102.

[24] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing, 9(1):3–12.

[25] Jin, Y., Olhofer, M., and Sendhoff, B. (2000). On evolutionary optimization with

approximate fitness functions. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pages 786–792. Morgan Kaufmann.

[26] Joseffsson, L. and Persson, P. (2006). Conformal Array Antenna Theory and Design.

John wiley & sons.

[27] Kelly, D. W., Gago, J. P. D. S. R., Zienkiewicz, O. C., and Babuska, I. (1983). A

posteriori error analysis and adaptive processes in the finite element method: Part ierror

analysis. International Journal for Numerical Methods in Engineering, 19:1593–1619.

[28] Khorsand, A.-R. and Akbarzadeh, M. (2007). Multi-objective meta level soft

computing-based evolutionary structural design. Journal of the Franklin Institute, pages

595–612.

[29] Khorsand, A.-R., Akbarzadeh-T, M.-R., and Moin, H. (2006). Genetic Quantum Al-

gorithm for Voltage and Pattern Design of Piezoelectric Actuator. In IEEE Congress on

Evolutionary Computation, CEC 2006, pages 2593–2600.

[30] Kim, H.-S. and Cho, S.-B. (2001). An efficient genetic algorithms with less fitness

evaluation by clustering. In Proceedings of IEEE Congress on Evolutionary Computa-

tion, pages 887–894. IEEE.

[31] Krommer, M. (2005). Dynamic shape control of sub-sections of moderately thick

beams. Computers & Structures, 83(15-16):1330–1339.

[32] Lemonge, A., Barbosa, H., and Fonseca, L. (2003). A genetic algorithm for the design

of space framed structures. In XXIV CILAMCE–Iberian Latin-American Congress on

Computational Methods in Engineering, Ouro Preto, Brazil.

44 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[33] Li, J., Sedaghati, R., Dargahi, J., and Waechter, D. (2005). Design and development

of a new piezoelectric linear Inchworm actuator. Mechatronics Journal, 15:651–681.

[34] Liew, K., He, X., and Ray, T. (2004). On the use of computational intelligence in the

optimal shape control of functionally graded smart plates. Computer Methods in Applied

Mechanics and Engineering, 193(42-44):4475–4492.

[35] Lim, D., Ong, Y. S., Jin, Y., and Sendhoff, B. (2006). Trusted evolutionary algorithm.

In Proceedings of the 2006 Congress on Evolutionary Computation (CEC’2006), pages

149–156.

[36] Lin, J. and Nien, M. (2005). Adaptive control of a composite cantilever beam with

piezoelectric damping-modal actuators/sensors. Composite Structures Journal, 70:170–

176.

[37] Mackerle, J. (2003). Smart materials and structuresa finite element approachan adden-

dum: a bibliography (1997 2002). Modelling and Simulation in Materials Science and

Engineering, 11(5):707–744.

[38] Mezura-Montes, E., editor (2009). Constraint-Handling in Evolutionary Optimization.

Springer, Berlin, Germany. ISBN 978-3-642-00618-0.

[39] Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs.

Springer-Verlag New York, Inc., New York, NY, USA.

[40] Nguyen, Q. and Tong, L. (2004). Shape control of smart composite plate with non-

rectangular piezoelectric actuators. Composite Structures, 66(1-4):207–214.

[41] Ong, Y., Nair, P., and Keane, A. (2003). Evolutionary optimization of computation-

ally expensive problems via surrogate modeling. American Institute of Aeronautics and

Astronautics Journal, 41(4):687–696.

[42] Ong, Y. S., Zhu, Z., and Lim, D. (2006). Curse and blessing of uncertainty in evolu-

tionary algorithm using approximation. In Proceedings of the 2006 Congress on Evolu-

tionary Computation (CEC’2006), pages 2928–2935.

[43] Papadrakakis, M., Lagaros, N., and Kokossalakis, G. (2000). Evolutionary Algorithms

Applied to Structural Optimization Problems. High Performance Computing for Com-

putational Mechanics, pages 207–233.

[44] Pelikan, M. and Sastry, K. (2004). Fitness inheritance in the Bayesian optimization al-

gorithms. In Genetic and Evolutionary Computation Conference, pages 48–59. Springer.

[45] Piefort, V. (2001). Finite element modelling of piezoelectric active structures. PhD

thesis, Université Libre de Bruxelles.

[46] Ratle, A. (1998). Accelerating the convergence of evolutionary algorithms by fitness

landscape approximation. In Eiben, A., Bäck, T., Schoenauer, M., and Schwefel, H.-P.,

editors, Parallel Problem Solving from Nature, volume V, pages 87–96.

[47] Reddy, J. (1993). Introduction to the Finite Element Method. McGrawHill, New York.

2.8 Conclusions 45

[48] Regis, R. and Shoemaker, C. (2004). Local function approximation in evolutionary

algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary

Computation, 8(5):490–505.

[49] Reyes Sierra, M. and Coello Coello, C. A. (2005a). Fitness Inheritance in Multi-

Objective Particle Swarm Optimization. In 2005 IEEE Swarm Intelligence Symposium

(SIS’05), pages 116–123, Pasadena, California, USA. IEEE Press.

[50] Reyes Sierra, M. and Coello Coello, C. A. (2005b). A Study of Fitness Inheritance

and Approximation Techniques for Multi-Objective Particle Swarm Optimization. In

2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 1, pages 65–

72, Edinburgh, Scotland. IEEE Service Center.

[51] Rodrı́guez, J. E., Medaglia, A. L., and Coello, C. A. C. (2009). Design of a motorcycle

frame using neuroacceleration strategies in MOEAs. Journal of Heuristics, 15(2):177–

196.

[52] Runarsson, T. P. (2004). Constrained Evolutionary Optimization by Approximate

Ranking and Surrogate Models. In Yao, X., Burke, E., Lozano, J. A., Smith, J., , Merelo-

Guervós, J. J., Bullinaria, J. A., Rowe, J., Tiňo, P., Kabán, A., and Schwefel, H.-P.,

editors, Proceedings of 8th Parallel Problem Solving From Nature (PPSN VIII), pages

401–410, Heidelberg, Germany. Birmingham, UK, Springer-Verlag. Lecture Notes in

Computer Science Vol. 3242.

[53] Runarsson, T. P. and Yao, X. (2000). Stochastic Ranking for Constrained Evolutionary

Optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

[54] Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). Design and analysis of

computer experiments (with discussion). In Statistical Science, volume 4, pages 409 –

435.

[55] Salami, M. and Hendtlass, T. (2003). A fast evaluation strategy for evolutionary algo-

rithms. Applied Soft Computing, 2:156–173.

[56] Sano, Y. and Kita, H. (2000). Optimization of noisy fitness functions by means of

genetic algorithms using history. In et al, M. S., editor, Parallel Problem Solving from

Nature (PPSN), volume 1917 of Lecture Notes in Computer Science. Springer.

[57] Santana-Quintero, L. V., Arias Montaño, A., and Coello Coello, C. A. (2010). A Re-

view of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective

Optimization. In Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Ex-

pensive Optimization Problems, pages 29–59. Springer, Berlin, Germany. ISBN 978-3-

642-10700-9.

[58] Shi, L. and Rasheed, K. (2010). A survey of fitness approximation methods applied

in evolutionary algorithms. In Hiot, L. M., .Ong, Y. S., Tenne, Y., and Goh, C. K.,

editors, Computational Intelligence in Expensive Optimization Problems, volume 2 of

Adaptation Learning and Optimization, pages 3–28. Springer Berlin Heidelberg.

46 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[59] Singh, H. K., Ray, T., and Smith, W. (2010). C-PSA: Constrained Pareto sim-

ulated annealing for constrained multi-objective optimization. Information Sciences,

180(13):2499–2513.

[60] Smith, R., Dike, B., and Stegmann, S. (1995). Fitness inheritance in genetic algo-

rithms. In Proceedings of ACM Symposiums on Applied Computing, pages 345–350.

ACM.

[61] Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation

of laminated composite structures using genetic algorithms and finite element analysis.

Composite Structures, 62(1):123–128.

[62] Weise, T. (2008). Global Optimization Algorithms–Theory and Application. URL:

http://www. it-weise. de, Abrufdatum, 1.

[63] Woldesenbet, Y. G., Yen, G. G., and Tessema, B. G. (2009). Constraint Handling in

Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Compu-

tation, 13(3):514–525.

[64] Won, K. S., Ray, T., and Tai, K. (2003). A framework for optimization using approxi-

mate functions. In Proceedings of IEEE Congress on Evolutionary Computation, pages

1077–1084.

[65] Zadeh, L. A. (1979). Fuzzy sets and information granularity. Advances in Fuzzy Set

Theory and Applications, pages 3–18.

[66] Zhang, X., Julstrom, B., and Cheng, W. (1997). Design of vector quantization code-

books using a genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary

Computation, pages 525–529. IEEE.

3
Evolutionary Hidden Information Detection

by Granulation-Based Fitness

approximation 1

Abstract

Spread spectrum audio watermarking (SSW) is one of the most powerful techniques for

secure audio watermarking. SSW hides information by spreading the spectrum. The hid-

den information is called the “watermark” and is added to a host signal, making the latter a

watermarked signal. The spreading of the spectrum is carried out by using a pseudo-noise

(PN) sequence. In conventional SSW approaches, the receiver must know both the PN se-

quence used at the transmitter and the location of the watermark in the watermarked signal

for detecting the hidden information. Detection of the PN sequence is the key issue of hid-

den information detection in SSW. Although the PN sequence can be reliably detected by

means of heuristic approaches, due to the high computational cost of this task, such ap-

proaches tend to be too computationally expensive to be practical. Evolutionary Algorithms

(EAs) belong to a class of such approaches. Most of the computational complexity involved

in the use of EAs arises from fitness function evaluation that may be either very difficult

to define or computationally very expensive to evaluate. This chapter proposes an approxi-

mate model, called Adaptive Fuzzy Fitness Granulation with Fuzzy Supervisor (AFFG-FS),

to replace the expensive fitness function evaluation. First, an intelligent guided technique

1This chapter is based on:

• M. Davarynejad, C.W. Ahn, J. Vrancken, J. van den Berg, C.A. Coello Coello, “Evolutionary hidden

information detection by granulation-based fitness approximation”, Applied Soft Computing, Vol. 10(3),

pp. 719-729, 2010, DOI: 10.1016/j.asoc.2009.09.001.

47

48 3 Evolutionary Hidden Information Detection by fitness approximation

via an adaptive fuzzy similarity analysis for fitness granulation is used for deciding on the

use of the exact fitness function and dynamically adapting the predicted model. Next, in

order to avoid manually tuning parameters, a fuzzy supervisor as auto-tuning algorithm is

employed. Its effectiveness is investigated with three traditional optimization benchmarks

of four different choices for the dimensionality of the search space. The effect of the num-

ber of granules on the rate of convergence is also studied. The proposed method is then

applied to the hidden information detection problem to recover a PN sequence with a chip

period equal to 63, 127 and 255 bits. In comparison with the standard application of EAs,

experimental analysis confirms that the proposed approach has an ability to considerably

reduce the computational complexity of the detection problem without compromising per-

formance. Furthermore, the auto-tuning of the fuzzy supervisor removes the need of exact

parameter determination.

3.1 Introduction

In recent years, digital watermarking has received due attention from the security and cryp-

tography research communities. Digital watermarking is a technique to hide information

into an innocuous-looking media object, which is called “host”, so that no one can suspect

the existence of hidden information. It is intended to provide a degree of copyright pro-

tection as use of digital media mushrooms [9]. Depending on the type of the host signal

to cover hidden information, watermarking is classified into image watermarking and au-

dio watermarking. In this chapter, we focus our attention on audio watermarking but the

approach can be applied to image watermarking as well.

Numerous audio watermarking techniques have been proposed and the most important

ones being Least Significant Bits (LSB) [13], Phase coding [3], Echo hiding [18] and spread

spectrum watermarking (SSW) [19]. The latter, SSW, is known as the most promising water-

marking method due to its high robustness against noise and high perceptual transparency.

The main idea of SSW is to add the spread spectrum of hidden information to the spectrum

of the host signal. Spreading the spectrum of the hidden information is performed by means

of a pseudo-random noise (PN) sequence.

Detection of hidden information from the received watermark signal is performed using

the exact PN sequence adopted for spreading the spectrum of hidden information. There-

fore, the receiver should have access to the PN sequence for detection. This essential, private

knowledge results in a highly secure transmission of information against any unauthorized

user who does not have access to the PN sequence and the location of the watermark. Hence,

the PN sequence can be regarded as a secret key which is shared between the transmitter

and the receiver.

In [26], genetic algorithms (GAs) have been presented for detecting hidden information,

even though the receiver has no prior knowledge on the transmitter’s spreading sequence.

However, iterative fitness function evaluation for such a complex problem is often the most

prohibitive and limiting segment of this approach. For the problem of recovering the PN

sequence, sequences with different periods have different converging times. In the study re-

ported in [26], it has been shown that converging time increases exponentially as the period

of the PN sequence increases. So, the approach fails by losing the validity of information.

The greater the PN sequence is, the more difficult is the situation for recovering the PN

3.1 Introduction 49

sequence and the more secure SSW will result. Note hereby that a greater period of the

PN sequence decreases the capacity of the SSW algorithm for embedding hidden informa-

tion. To alleviate the problem of exponentially increasing converging times, a variety of

techniques for constructing approximation models - often referred to as metamodels - have

been proposed [8, 14]. For computationally expensive optimization problems such as the

detection of hidden information, it may be necessary to strike a balance between exact fit-

ness evaluation and approximate fitness evaluation. A popular subclass of fitness function

approximation methods is fitness inheritance where fitness is simply inherited [8]. A similar

approach named Fast Evolutionary Strategy (FES) has also been suggested in [25], in which

the fitness of a child individual is the weighted sum of its parents. In that approach, fitness

and associated reliability values are assigned to each new individual, and then the actual

fitness function is only evaluated when the reliability value is below a certain threshold.

Further, Reyes Sierra and Coello Coello [24] incorporated the concept of fitness inheritance

into a multi-objective particle swarm optimizer to reduce the number of fitness evaluations.

In [23], they tested their approach on a well-known test suite of multi-objective optimization

problems. They generally reported lower computation cost, while the quality of their results

improved in higher dimensional spaces. However, as also shown in [12] as well as in this

chapter, the performance of parents may not be a good predictor of their children for suf-

ficiently complex and multiobjective problems, rendering fitness inheritance inappropriate

under such circumstances.

Other common approaches based on learning and interpolation from known fitness val-

ues of a small population, (e.g. low-order polynomials and least square estimations [21],

artificial neural networks (ANN) including multi-layer perceptrons [16] and radial basis

function networks [29], support vector machines (SVM) [14, 28], etc.) can also be em-

ployed.

In 1979, Zadeh [31] developed fuzzy information granulation as a technique by which a

class of points (objects) is partitioned into granules, with a granule being a clump of objects

drawn together by indistinguishability, similarity, and/or functionality. The fuzziness of

granules and their attributes is characteristic of the ways by which human concepts and

reasoning are formed, organized and manipulated. The concept of a granule is more general

than that of a cluster, potentially giving rise to various conceptual structures in various fields

of science as well as in mathematics.

In this chapter, with a view to reducing computational cost, we employ the concept of

fuzzy granulation to effectively approximate the fitness function in evolutionary algorithms

(EAs). In other words, the concept of fitness granulation is applied to exploit the natural

tolerance of EAs in fitness function computations. Nature’s “survival of the fittest” does not

necessarily mean exact measures of fitness; rather it is about rankings among competing

peers [17]. By exploiting this natural tolerance for imprecision, optimization performance

can be preserved through computing fitness only selectively based on the ranking among

individuals in a given population. Unlike existing approaches, the fitness values are not

interpolated or estimated; rather the similarity and indistinguishability among real solutions

is exploited.

In the proposed algorithm, as explained in detail in [11], an adaptive pool of solutions

(fuzzy granules) with an exactly computed fitness function is maintained. If a new indi-

vidual is sufficiently similar to a known fuzzy granule, then that granule’s fitness is used

instead as a crude estimate. Otherwise, the individual is added to the pool as a new fuzzy

50 3 Evolutionary Hidden Information Detection by fitness approximation

granule. In this fashion, regardless of the competition’s outcome, fitness of the new individ-

ual is always a physically realizable one, even if it is a “crude” estimate and not an exact

measurement. The pool size as well as each granule’s radius of influence self-adaptively

grow or shrink depending on the utility of each granule and the overall population fitness.

To encourage fewer function evaluations, each granule’s radius of influence is initially large

and then gradually shrinks in the course of evolution. This encourages more exact fitness

evaluations when competition is fierce among more similar and converging solutions. Fur-

thermore, to prevent the pool from growing too large, granules that are not used are grad-

ually eliminated. This fuzzy granulation scheme is applied here as a type of fuzzy approx-

imation model to efficiently detect hidden information from spread spectrum watermarked

signals. Finally, a fuzzy supervisor is developed for adaptively, automatically adjusting sys-

tem parameters. The chapter is organized as follows: Section 3.2 presents the framework of

adaptive fuzzy fitness granulation (AFFG). An auto-tuning strategy for determining width

of membership functions (MFs) is also presented in the section; by which the need of exact

parameter setting is eliminated, without affecting the rate of convergence. This approach is

called adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS). In Section 3.3,

the proposed algorithm is tested on three traditional optimization benchmarks with four

different dimensions. In Section 3.4, the recovery of the PN sequence from a received wa-

termarked signal using the proposed approach is illustrated. Some supporting simulation

results and discussion thereof are also presented in the section. Finally, conclusions are

drawn in Section 3.5.

3.2 The AFFG Framework

Adaptive fuzzy fitness granulation (AFFG) was first proposed in [11]. It includes a global

model of a genetic algorithm (GA) which is hybridized with a fuzzy granulation (FG) tool

(see Figure 3.1). The expensive fitness evaluation of individuals required in traditional GA,

can be partially replaced by an approximation model. Explicit control strategies are used

for evolution control, leading to a considerable speedup without compromising heavily on

the solution accuracy. While the approximation techniques themselves are widely known

for accelerating the iterative optimization process, the focus of AFFG lies in promoting con-

trolled speedup in view of avoiding detrimental effects of the approximation. The following

section presents the main elements of the AFFG framework.

3.2.1 Basic Idea

The proposed adaptive fuzzy fitness granulation aims to minimize the number of exact fit-

ness function (FF) evaluations by maintaining a pool of solutions (fuzzy granules) by which

can be used to approximate solutions in further stages of the evolutionary process. The

algorithm uses Fuzzy Similarity Analysis (FSA) to produce and update an adaptive compet-

itive pool of dissimilar solutions (granules). When a new solution is introduced to this pool,

granules compete by a measure of similarity to win the new solution and thereby to prolong

their lives in the pool. In turn, the new individual simply assumes fitness of the winning

(most similar) individual in this pool. If none of the granules are sufficiently similar to the

new individual (i.e., if their similarity is below a certain threshold), the new individual is

3.2 The AFFG Framework 51

Fuzzy Similarity

Analysis based on

Granulation Pool

Yes
FF EvaluationFF Association

Phenospace

Fitness of Individual

Update Granulation

Table

No

Figure 3.1: The architecture of the proposed algorithm.

instead added to the pool after its exact fitness is evaluated by the actual fitness function.

Finally, granules that cannot win new individuals are gradually eliminated in order to avoid

consistent growth of the pool. The basic idea of the proposed algorithm is graphically shown

in Figure 3.1 and is discussed in more detail in the next section. For even more details, we

refer to [11] and [2].

3.2.2 Basic Algorithm Structure

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . ,x

1
t } of design variable

vector, where, more generally, xi
j = {xi

j,1, xi
j,2, . . . ,x

i
j,r, . . . , xi

j,m} is the jth parameter

individual in the ith generation, xi
j,r the rth parameter of xi

j ∈ IR, m is the number of design

variables and t is the population size.

Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ IRm, σk ∈ IR, Lk ∈ IR, k = 1, . . . , l}. G is initially empty (i.e., l = 0). Ck is an m-

dimensional vector of centers, σk is the width of membership function (WMF) of the kth

fuzzy granule, and Lk is the granule’s life index.

Step 3: Choose the phenotype of first chromosome (x1
1 = {x1

1,1, x1
1,2, . . . , x1

1,r, . . . , x1
1,m})

as the center of the first granule (C1 = {c1,1, c1,2, . . . ,c1,r,
. . . , c1,m} = x1

1).

Step 4: Define the fuzzy membership µk,r of each xi
j,r to each granule member by a

Gaussian similarity neighborhood function according to

µk,r

(

xi
j,r

)

= exp

(

−
(

xi
j,r − ck,r

)2

(σk)
2

)

, k = 1,2, . . . , l , (3.1)

where l is the number of fuzzy granules.

Remark: σk is the distance measurement parameter that controls the degree of similarity

between two individuals. Like in [10], σk is defined based on equation (3.2). According to

52 3 Evolutionary Hidden Information Detection by fitness approximation

this definition, the granules shrink or enlarge in reverse proportion to their fitness:

σk = γ
1

(

eF(Ck)
)β

, (3.2)

where β> 0 is an emphasis operator and γ is a proportionality constant. The problem arising

here is how to determine the parameters β and γ as design parameters. The fact is that these

two parameters are problem dependent and, in practice, a number of trials is needed to adjust

these parameters. This trial is based on a simple rule with respect to the acceleration of the

parameter optimization procedure: high speed needs to have enlargement in the granule

spread and, as a consequence of this, less accuracy is obtained in the fitness approximation,

and viceversa. To deal with this rule, a fuzzy controller is presented in [10].

Step 5: Compute the average similarity of every new design parameter xi
j = {xi

j,1, xi
j,2,

. . . ,xi
j,r, . . . , xi

j,m} to each granule Gk using equation (3.3)

µ j,k =

m

∑
r=1

µk,r

(

xi
j,r

)

m
(3.3)

Step 6: Either calculate the exact fitness function of xi
j or estimate the fitness function

value by associating it to one of the granules in the pool in case there is a granule in the pool

with higher similarity to xi
j than a predefined threshold, i.e.

f
(

xi
j

)

=







f (Ck) if max
k∈{1,2,...,l}

{µ j,k}> θi ,

f
(

xi
j

)

otherwise.
(3.4)

where f (Cx) is the fitness function value of the fuzzy granule, f (xi
j) is the real fitness calcu-

lation of the individual, θi =α(max{ f (xi−1
1), f (xi−1

2), . . . , f (xi−1
t)}/ f

i−1
), K = argmax{µ j,k}

when k ∈ {1,2, . . . , l}, f
i
= ∑i

j=1 f (xi
j)/t and α > 0 is a proportionality constant that is usu-

ally set at 0.9 unless otherwise indicated. The threshold θi increases as the best individual’s

fitness at generation i increases. As the population matures and reaches higher fitness val-

ues (i.e., while converging more), the algorithm becomes more selective and uses exact

fitness calculations more often. Therefore, with this technique we can utilize the previous

computational efforts during previous generations. Alternatively, if

max
k∈{1,2,...,l}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 5 to 7.

Step 8: Select parents using a suitable selection operator and apply the genetic operators

of recombination and mutation to create a new generation.

Step 9: When termination/evolution control criteria are not met, then update σk using

equation (3.2) and repeat Steps 5 to 9.

3.2 The AFFG Framework 53

3.2.3 How to control the size of the granule pool?

As the evolutionary procedures proceed, it is inevitable that new granules are generated

and added to the pool. Depending on complexity of the problem, the size of this pool can

become excessive and become a computational burden itself. To prevent such unnecessary

computational effort, a forgetting factor is introduced in order to appropriately decrease

the size of the pool. In other words, it is better to remove granules that do not win new

individuals, thereby producing a bias against individuals that have low fitness and were

likely produced by a failed mutation attempt. Hence, Lk is initially set to N and subsequently

updated as below,

Lk =

{

Lk +M if k = K ,

Lk otherwise ,
(3.5)

where M is the life reward of the granule and K is the index of the winning granule for

each individual at generation i. At each table update, only the NG granules with the highest

Lk index are kept, and the others are discarded. In [2], an example has been provided to

illustrate the competitive granule pool update law.

Adding a new granule to the granule pool and assigning a life index to it, is a simple

way of controlling the size of the granule pool, since the granules with the lowest life index

will be removed from the pool. However, it may happen that the new granule is removed,

even though it was just inserted into the pool. In order to prevent this, the pool is split into

two parts with sizes εNG and (1− ε)NG. The first part is a FIFO (First In, First Out) queue

and new granules are added to this part. If it grows above εNG, then the top of the queue

is moved to the other part. Removal from the pool takes place only in the (1− ε)NG part.

In this way, new granules have a good chance to survive a number of steps. In all of the

simulations that are conducted here, ε is set at 0.1.

The distance measurement parameter is completely influenced by the granule enlarge-

ment/shrinkage in the widths of the produced membership functions. As in [11], the com-

bined effect of granule enlargement/shrinkage is in accordance with the granule fitness and

it requires the fine-tuning of two parameters, namely β and γ. These parameters are prob-

lem dependent and it seems critical to have a procedure to deal with this difficulty. The next

section presents an auto-tuning strategy for determining the width of MFs which removes

the need of exact parameter determination, without negative influence on the convergence

speed.

3.2.4 How to Determine the Width of the Membership Functions

It is crucial to have accurate estimations of the fitness function of the individuals in the fin-

ishing generations. In the proposed method, it can be accomplished by controlling the width

of the produced MFs. At early steps of evolution, by choosing relatively large WMFs, the

algorithm accepts individuals with less degree of similarity as similar individual. Therefore

at the early stages of the search, the fitness function is more often estimated. As the individ-

uals mature and reach better fitness values, the width decreases and the similarity between

individuals should increase in order to be accepted as similar individuals. This prompts

higher selectivity for granule associability and a higher threshold for estimation. In short, in

later generations, the degree of similarity between two individuals must be larger than that

54 3 Evolutionary Hidden Information Detection by fitness approximation

Fuzzy Logic

Controller

AFFG

Structural Design

Problem

NDV

MRDV

PCG
kσ

Figure 3.2: Flow-diagram of Adaptive Fuzzy Controller.

in the early generations, to be accepted as similar individuals. This procedure ensures a fast

convergence rate due to rapid computation at the early phase and accurate fitness estimation

at the later stage.

To achieve these desiderata, a fuzzy supervisor with three inputs is employed. Dur-

ing the AFFG search, the fuzzy logic controller observes the Number of Design Variables

(NDV), the Maximum Range of Design Variables (MRDV) and the percentage of completed

trials, and specifies the WMFs. The first input is the NDV and the Range of the input vari-

ables (RIV) is the second one. Large values of the NDV and MRDV need big width in the

MFs, vice versa. The Percent Completed Generations (PCG) is the third input, which takes

a number in the range [0, 1], where “1” signifies exhaustion of all allowed trials. This con-

cerns the maturity level of search, given a fixed amount of resources. The combined effect

of granule enlargement/shrinkage in accordance to PCG is to realize both rapid computation

and accurate fitness estimation.

The architecture for adaptive fuzzy control of the WMFs is visualized in Figure 3.2.

Gaussian MFs are used for specification of the knowledge base of the fuzzy logic controller.

The knowledge base for controlling the WMFs based on the above architecture has a large

number of rules and the extraction of these rules is very difficult. Consequently, a new

architecture (as shown in Figure 3.3) is proposed, in which the controller is separated in

two controllers to diminish the complexity of the system and to reduce the number of rules.

The first controller has two inputs (with three MFs in each, Zero(0, 0.3), Small(0.5, 0.3),

Big(1.0, 0.3), the first number is the center and the second one is the spread), and the second

controller has only one input. As shown in Figure 3.3, the spread of the granules is provided

by the multiple output of the controllers. The knowledge base for the first controller is

shown in Table 3.1. The Gaussian MFs with equal width in each (0.3) are used for output.

The second controller has just one Gaussian MF in which 0 and 1.25 are its center and

spread, respectively. The fuzzy system (that employs singleton fuzzifier, products inference

engine, and center average defuzzifier) adjusts σk after each generation.

3.3 Benchmark problems and numerical results

To illustrate the efficacy of the proposed granulation techniques, a set of 3 traditional op-

timization benchmarks (shown in Table (3.2)) are chosen namely: Ackley, Griewangk and

3.3 Benchmark problems and numerical results 55

Fuzzy Logic

Controller

AFFG

Structural Design

Problem

NDV

MRDV

kσ

Fuzzy Logic

Controller

PCG

×

Figure 3.3: Flow-diagram of Proposed Fuzzy Controller.

Table 3.1: Fuzzy Rules of the First Controller.

NDV

MRDV Zero Small Big

Zero 228.1 4601.2 6.39×10−05

Small 155.9 511.9 6.34×10−05

Big 97.5 406.7 6.39×10−05

Rastrigin. These benchmark functions are scalable and are commonly used to assess op-

timization algorithms. They have some intriguing features which most optimization algo-

rithms find hard to deal with.

The Ackley function [1, 7] has an exponential term by which numerous local minima are

produced. Analyzing a wider region helps to cross the valley along local optima, thereby

achieving better solutions. The global optimum is always f (x) = 0, which is obtained at

Table 3.2: Benchmark problems used in the experiments.

Function name Mathematical Representation Original Search space

20+ e−20exp

(

−0.2
√

1
D ∑D

i=1 x2
i

)

Ackley
−exp

(

1
D ∑D

i=1 cos(2πxi)
)

[−32.768,32.768]D

Griewank 1+ 1
4000 ∑D

i=1 x2
i −∏D

i=1 cos
(

xi√
i

)

[−600,600]D

Rastrigin 10D+∑D
i=1

(

x2
i −10cos(2πxi)

)

[−5.112,5.112]D

56 3 Evolutionary Hidden Information Detection by fitness approximation

Table 3.3: Benchmark problems used in the experiments.

Function β γ

Ackley 0.02 0.25

Griewank 0.00012 190.0

Rastrigin 0.004 0.15

xi = 0, ∀i.

The Griewangk function [6] is also highly multimodal. Unlike Ackley and Rastrigin

functions, it has a product term that introduces interdependence among variables. It is

hard to find the optimal solution without some information on the variables’ dependencies.

Regardless of its dimensionality, the global optimum is f (x) = 0 which occurs at xi = 0, ∀i.

The Rastrigin function [22] is created by adding a cosine modulation term to the Sphere

function. It consists of a large number of local minima whose values increase in receding

from the global minimum. The global optimum is f (x) = 0 which occurs at xi = 0, ∀i.

The aim of the empirical study consists of investigating the search capability, as a func-

tion optimizer, of the proposed granulation technique (AFFG-FS), compared to the conven-

tional GA, FES and AFFG techniques. The parameters are summarized in Table 3.4.

The GA routine utilizes random initial populations, binary-coded chromosomes, single-

point crossover, bit-wise mutation, fitness scaling, and an elitist stochastic universal sam-

pling selection strategy. Moreover, crossover and mutation probabilities are PXOV ER = 1

and PMUTAT ION = 0.01 respectively, the population size is 20, and the maximum number of

generations is 100. Finally chromosome length varies depending on the number of variables

in a given problem, but each variable’s length is set to 8 bits. The total number of gener-

ations as well as the termination criterion is determined during several trial runs to ensure

the convergence of the algorithm on the three benchmark problems.

AFFG and AFFG-FS uses all of the above evolutionary parameters as in a GA to estab-

lish analysis only from the perspective of granulation and in order to keep track of the best

solution found. Ten independent runs of each experiment were executed.

As to FES, a fitness and an associated reliability values are assigned to each new indi-

vidual. The fitness is actually evaluated if the reliability value is below a certain threshold.

The reliability value varies between 0 and 1 and depends on two factors: the first one is the

reliability of parents, and the second one is the closeness of parents and children in the so-

lution space. Three different levels for T , i.e., 0.5, 0.7 and 0.9, have been used here which

equal to ones proposed in [25].

In this experiment, four sets of dimensions are considered for each test function; namely

n = 5, 10, 20 and 30. As for both the AFFG and AFFG-FS, NG changes and is set at 20, 20,

40 and 80 respectively. The reported results were obtained by achieving the same level of

fitness evaluations for both the proposed method (AFFG-FS) and the comparative references

(GA, FES and AFFG), namely 500 for 5-D (dimension), 1000 for 10-D, 2000 for 20-D and

3000 for 30-D.

The average convergence trends of the standard GA, FES, AFFG and AFFG-FG are

summarized in Figures 3.4 to 3.6. All the results presented were averaged over 10 runs. The

y-axis in these figures denotes the (average) fitness value in common logarithmic scale, and

3.4 Spread Spectrum Watermarking (SSW) 57

0 100 200 300 400 500

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000

2.4

2.5

2.6

2.7

2.8

2.9

3

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000

2.6

2.7

2.8

2.9

3

3.1

3.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.4: Comparisons of convergence curve on the Ackley function.

the x-axis denotes the number of exact function evaluation.

As shown in Figures 3.4 to 3.6, the search performance of AFFG and AFFG-FS are

superior to GA and FES, even with a small number of granules in the granule pool. The

results also illustrate that fitness inheritance method (i.e., FES), albeit being comparable in

smaller dimensions, deteriorates as the problem size increases.

We also studied the effect of varying the number of granules NG on the convergence

behavior of AFFG and AFFG-FS. The comparison can be made by the results obtained in

Figure 3.8. The good news from the results is that AFFG and AFFG-FS are not so sensitive

to NG . However, further increase of NG slows down the rate of convergence due to the

imposed computational complexity.

3.4 Spread Spectrum Watermarking (SSW)

This section bears out the effectiveness of the proposed granulation technique in real world

applications. We consider a hidden information detection problem such that the correct

(pseudorandom noise) PN sequence must be recovered from a spread spectrum watermarked

signal. Spread spectrum watermarking (SSW) has been perceived to be a powerful wa-

termarking scheme that offers high robustness (surviving hidden information after noise

addition), high transparency (high quality of watermarked signal after addition of hidden

information) and high security (against unauthorized users) to hide the bits of information.

SSW uses the idea of spread spectrum communication to embed bits of information into a

58 3 Evolutionary Hidden Information Detection by fitness approximation

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000
0

1

2

3

4

5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000
0

1

2

3

4

5

6

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.5: Comparisons of convergence curve on the Griewangk function.

host signal. Spreading the spectrum of the hidden information is carried out by a pseudo-

random noise sequence. A PN sequence is a zero mean, periodic binary sequence with a

noise-like waveform whose bits are equal to +1 or -1 [15]. To embed each bit of hidden

information m(i), i = 1,2 . . . , into a host signal, the embedder conducts the following steps.

• Generates one period of the PN sequence by a PN sequence generator.

• Multiply m(i) by all the bits of the generated PN sequence to generate a watermark

signal as follows:

w(i) = p(n)m(i),n = 1,2, . . . ,N (3.6)

where p(n) is the nth bit of the PN sequence and w(i) is the ith block of the watermark

signal.

• Produces a watermarked signal s(w,x) as follows:

S(w,x) = λw(n)+ x(n) (3.7)

Then the watermarked signal S(w,x) is sent to the receiver.

Extraction of hidden information from a received watermarked signal at the detector can

be done using the correlation property of the PN sequence. Cross correlation C(., .) between

two PN sequences pa and pb is given as 3.8 [20].

3.4 Spread Spectrum Watermarking (SSW) 59

0 100 200 300 400 500

2

2.5

3

3.5

4

4.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.6: Comparisons of convergence curve on the Rastrigin function.

C(Pa,Pb) =
1

N

N−1

∑
i=0

(Pa(i)Pb(i)) =

{

i, if a = b
−1
N
, otherwise.

(3.8)

Hence, cross correlation between a watermarked signal and a PN sequence can be writ-

ten a the following.

C(S, p′) =C(w, p′)+C(m.p, p′) =

{

C(w, p′)+m, if p = p′

C(w, p′)− m
N
, otherwise.

(3.9)

Equation (3.9) expresses that the bit of hidden information can be determined by cal-

culating the correlations between the received watermarked signal and the PN sequence

employed at the transmitter, and comparing the result with a threshold.

3.4.1 Recovering the PN sequence

In general, it is very hard to recover the PN sequence from a spread spectrum watermarked

signal where no information about the PN sequence or its location is known. The reason is

that there are vast regions for the solution sets of possible PN sequences. For instance, to

recover a PN sequence with a period equal to 63 bits, 263 PN sequences must be generated.

To make the problem of recovering the PN sequence more tractable, we assume that the

exact location of the watermark in the watermarked signal is known. In [27], an approach

60 3 Evolutionary Hidden Information Detection by fitness approximation

0 200 400 600 800 1000

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

0 200 400 600 800 1000
3

3.5

4

4.5

5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

Figure 3.7: Effect of Varying NG ∈{20,50,100} on convergence trend of studied benchmark

optimization problems when D is set at 10.

for detecting hidden information from an image spread spectrum signal has been proposed.

This approach detects abrupt jumps in the statistics of the watermarked signal to recover

the PN sequence. However, the algorithm which is based on hypothesis tests for detection

of abrupt jump in the statistics is very complicated and its performance suffers from low

frequency embedding.

Our approach to recover the PN sequence is based on unconstrained optimization. We

have a set of feasible solutions available in order to find the global minimum of a cost func-

tion. The feasible solutions are sequences with the period length of the PN sequence and

elements of +1 and -1. A cost function for this problem can be defined by a exploring a very

useful property of SSW (in detection), namely the correlation property of the PN sequence.

Thus, the proper cost (fitness) function is the cross correlation between the generated se-

quence and the watermarked signal as is defined in Equation (3.9).

In [5], an interesting method for recovering the PN sequence of the spread spectrum

signal with a predefined SNR has been proposed. The approach uses a GA approach with

a fitness function based on the cross correlation between the estimated PN sequence and

the spread spectrum. However, spread spectrum watermarking is more complicated than a

single spread spectrum signal since, in SSW, the spread spectrum hidden information is like

a white Gaussian noise for the host signal.

We observe here that the computation of the cross correlation between the sequences

of possible solutions’ set and the watermarked signal for only one block of the SSW signal

3.4 Spread Spectrum Watermarking (SSW) 61

would not converge to the PN sequence used at the transmitter. This is because the energy

of host signal is at least 12 dB more than the energy of the watermark, and that has a strong

effect on maximizing the cross correlation (i.e., the optimization algorithm converges to

a sequence that maximizes the correlation with the host). As a solution to this problem,

several consequence blocks of the watermark (i.e. several bits of hidden information) should

be considered in the computation of the cross correlation. In this case, the watermark signal

has a stronger effect than the host signal on maximizing the cross correlation function.

Carrying out the global optimization by searching over the entire solution set, as men-

tioned above, is the subject of deterministic methods such as covering methods, tunneling

methods, zooming methods, etc. Such methods discover the global minimum by an exhaus-

tive search over the entire solution set. For instance, the basic idea is to cover all the feasible

solutions by evaluating the objective function at all points [4]. Although these schemes have

high reliability and accuracy is always guaranteed, they are not practical due to their poor

convergence [30].

Since the solution set is vast, we need an efficient optimization algorithm with high

reliability and fast converging rate. Many stochastic optimization algorithms have been

proposed such as GA, simulated annealing, ant colony, etc. However, the GA approach

has been perceived to be promising in a wide range of applications. Moreover, it is apt to

strike an attractive balance between reliability and converging rate. In this regard, we have

chosen the GA framework for the global optimization task. In order to further enhance the

search capability, we employ the proposed AFFG-FS with a view to reduce the number of

expensive fitness evaluations by incorporating an approximate model.

Empirical results for recovering PN sequence

This empirical study focuses on performance improvement of the proposed granulation

technique (AFFG-FS) in comparison with conventional GA approaches. In Section (3.3), it

has been exhibited that the fuzzy supervisory part of AFFG-FS gets rid of the need of exact

parameter determination of AFFG, and their performances are comparable to each other.

Moreover, it has also been shown that FES is much worse than the granulation techniques.

As such, we did not take into account the original AFFG and FES as comparative references

in this experiment.

In order to reasonably keep track of the best solution found, the GA uses roulette-wheel

selection with elitism. Moreover, one-point crossover and bit-wise mutation are imple-

mented. Crossover and mutation probabilities used are 1.0 and 0.01, respectively. The

population size is set to 20 with the elite size of 2.

For AFFG-FS, the number of individuals in the granule pool varies between 10, 20 and

50. The reported results were obtained by achieving the same level of fitness evaluations

for both a canonical GA and the proposed AFFG-FS. In this experiment, all results were

averaged over 10 runs.

The average of convergence performance of GA and AFFG-FG is depicted in Fig-

ure (3.8) and is summarized in Table 3.4. It is seen that cross correlation values returned

by AFFG with NG = {10,20,50} are much better than that of GA. It is also observed that

the cross correlation increases, albeit insensitive, with the number of granules. However,

the increase of NG slows down the rate of convergence due to its imposed computational

complexity. Moreover, Table 3.4 exhibits that the rate of convergence of AFFG-FS is, on

62 3 Evolutionary Hidden Information Detection by fitness approximation

0 2000 4000 6000 8000 10000

4

5

6

7

8

9

10

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(a)

0 2000 4000 6000 8000 10000

2

3

4

5

6

7

8

9

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(b)

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(c)

Figure 3.8: Cross correlation between the estimated PN sequence and the watermarked sig-

nal when a) PN sequence has a period of 63 chips, b) PN sequence has a period

of 127 chips, c) PN sequence has a period of 255 chips, .

average, 3.5 times faster than that of GA. It is noted that the performance gain is not so

dependent on the chip length of the PN sequence (i.e., problem size). From the results, it

can be concluded that the search performance of AFFG-FS is superior to that of the GA,

even with the small number of individuals in the granule pool.

3.5 Concluding Remarks

An intelligent guided technique via an adaptive fuzzy similarity analysis for fitness granula-

tion, called adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS), has been

presented. The aim was to decide on the use of expensive function evaluations and adapt

the predictive model in a dynamic manner. A fuzzy supervisor as an auto-tuning strategy

has also been proposed in order to avoid the tuning of parameters. Empirical evidence on its

effectiveness over existing approaches (i.e., GA and FES) was adduced with widely-known

benchmark functions. In detail, numerical results showed that the proposed technique is

capable of optimizing functions of varied complexity efficiently. It was seen that AFFG and

AFFG-FS are not much sensitive to the number of granules NG, and smaller values of NG

still lead to good results. Moreover, the auto-tuning of fuzzy supervisor eliminated the need

for exact parameter determination without compromising convergence performance.

The proposed AFFG-FS has been further applied to the problem of detecting hidden

3.5 Concluding Remarks 63

Table 3.4: Performance comparison of GA and AFFG-FS when NG = {10,20,50}.

Chip length Criteria-I a Criteria-II b Criteria-III c

63

GA 10.17 9.57 9965

AFFG-FS, 10 10.29 10.18 2978

AFFG-FS, 20 10.36 10.29 2547

AFFG-FS, 50 10.39 10.28 1904

127

GA 4.51 4.16 9934

AFFG-FS, 10 5.90 5.58 3817

AFFG-FS, 20 6.10 5.72 2969

AFFG-FS, 50 6.19 5.86 2156

255

GA 4.51 4.16 9934

AFFG-FS, 10 5.90 5.58 3817

AFFG-FS, 20 6.10 5.72 2969

AFFG-FS, 50 6.19 5.86 2156

a The best cross correlation of population at the last generation.
b The average cross correlation of population at the last generation.
c The average number of fitness evaluations until the same cross correlation value

is reached (the values are equal to the average cross correlation of population

achieved by GA at the last generation); 4.16 for 255 chips, 6.16 for 127 chips, 9.57

for 63 chips.

information from a spread spectrum watermarked signal. Under the assumption of knowing

the location of hidden information, the knowledge necessary for detecting hidden infor-

mation at the receiver (that is the PN sequence used at the transmitter) could be detected.

Experimental studies demonstrated that AFFG-FS is capable of rapidly detecting hidden

information.

Acknowledgments

This research received funding from the European Community’s Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement no. INFSO-ICT-223844, the Next Gener-

ation Infrastructures Research Program of Delft University of Technology and the Mexican

CONACyT project No. 45683-Y.

References

[1] Ackley, D. (1987). An empirical study of bit vector function optimization. Genetic

algorithms and simulated annealing, 1:170–204.

64 3 Evolutionary Hidden Information Detection by fitness approximation

[2] Akbarzadeh-T, M., Davarynejad, M., and Pariz, N. (2008). Adaptive fuzzy fitness gran-

ulation for evolutionary optimization. International Journal of Approximate Reasoning,

49(3):523–538.

[3] Ansari, R., Malik, H., and Khokhar, A. (2004). Data-hiding in audio using frequency-

selective phase alteration. In IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’04), volume 5, pages 389–392.

[4] Arora, J., Elwakeil, O., Chahande, A., and Hsieh, C. (1995). Global optimization meth-

ods for engineering applications: a review. Structural and Multidisciplinary Optimiza-

tion, 9(3):137–159.

[5] Asghari, V. and Ardebilipour, M. (2004). Spread spectrum code estimation by genetic

algorithm. International Journal of signal processing, 1(4):301–304.

[6] Back, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of evolutionary computa-

tion. New York: Oxford Univ. Press and Institute of Physics.

[7] Bäck, T. and Schwefel, H. (1993). An overview of evolutionary algorithms for param-

eter optimization. Evolutionary computation, 1(1):1–23.

[8] Chen, J., Goldberg, D., Ho, S., and Sastry, K. (2002). Fitness inheritance in multiobjec-

tive optimization. In Genetic and Evolutionary Computation Conference (GECCO’02),

pages 319–326.

[9] Cvejic, N. (2004). Algorithms for audio watermarking and steganography. PhD thesis,

PhD thesis, Oulu University of Technology.

[10] Davarynejad, M., Ahn, C. W., Vrancken, J. L. M., van den Berg, J., and Coello, C.

A. C. (2010). Evolutionary hidden information detection by granulation-based fitness

approximation. Applied Soft Computing, 10(3):719–729.

[11] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-

ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,

R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for

Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[12] Ducheyne, E., Baets, B. D., and Wulf, R. D. (2003). Is fitness inheritance useful for

real-world applications? In Evolutionary Multi-Criterion Optimization, pages 31–42.

[13] Gopalan, K. (2003). Audio steganography using bit modification. In IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP ’03), pages

421–424.

[14] Gunn, S. (1998). Support vector machines for classification and regression. Technical

report, Technical Report, School of Electronics and Computer Science, University of

Southampton.

[15] Haykin, S. (2001). Communication systems. John Wiley & Sons, Inc.

3.5 Concluding Remarks 65

[16] Hong, Y., Lee, H., and Tahk, M. (2003). Acceleration of the convergence speed of

evolutionary algorithms using multi-layer neural networks. Engineering Optimization,

35(1):91–102.

[17] Hüsken, M., Jin, Y., and Sendhoff, B. (2005). Structure optimization of neural net-

works for evolutionary design optimization. Soft Computing, 9(1):21–28.

[18] Kim, H. and Choi, Y. (2003). A novel echo-hiding scheme with backward and forward

kernels. IEEE Transactions on Circuits and Systems for Video Technology, 13(8):885–

889.

[19] Kirovski, D. and Malvar, H. (2003). Spread-spectrum watermarking of audio signals.

IEEE Transactions on Signal Processing, 51(4):1020–1033.

[20] Liu, Z., Kobayashi, Y., Sawato, S., and Inoue, A. (2002). A robust audio watermarking

method using sine function patterns based on pseudorandom sequences. In Pacific Rim

Workshop on Digital Steganography, pages 167–173.

[21] Myers, R., Montgomery, D., and Anderson-Cook, C. (2009). Response surface

methodology: process and product optimization using designed experiments. John Wiley

& Sons.

[22] Rastrigin, L. (1974). Extremal control systems. Theoretical Foundations of engineer-

ing cybernetics series.

[23] Reyes-Sierra, M. and Coello, C. C. (2005). A study of fitness inheritance and approx-

imation techniques for multi-objective particle swarm optimization. In IEEE Congress

on Evolutionary Computation (CEC’05), volume 1, pages 65–72.

[24] Reyes-Sierra, M. and Coello, C. C. (2006). Dynamic fitness inheritance proportion for

multi-objective particle swarm optimization. In Genetic and Evolutionary Computation

Conference (GECCO’06), pages 89–90.

[25] Salami, M. and Hendtlass, T. (2003). A fast evaluation strategy for evolutionary algo-

rithms. Applied Soft Computing, 2(3):156–173.

[26] Sedghi, S., Mashhadi, H., and Khademi, M. (2006). Detecting hidden information

from a spread spectrum watermarked signal by genetic algorithm. In IEEE Congress on

Evolutionary Computation (CEC’06), pages 173–178.

[27] Trivedi, S. and Chandramouli, R. (2005). Secret key estimation in sequential steganog-

raphy. IEEE Transactions on Signal Processing, 53(2):746–757.

[28] Vapnik, V. (2000). The nature of statistical learning theory. Springer-Verlag New

York Incorporated.

[29] Won, K. and Ray, T. (2005). A framework for design optimization using surrogates.

Engineering optimization, 37(7):685–703.

[30] Yen, K. and Hanzo, L. (2001). Genetic algorithm assisted joint multiuser symbol

detection and fading channel estimation for synchronous cdma systems. IEEE Journal

on Selected Areas in Communications, 19(6):985–998.

66 3 Evolutionary Hidden Information Detection by fitness approximation

[31] Zadeh, L. (1979). Fuzzy sets and information granularity. In Gupta, M., Ragade, R.,

and Yager, R., editors, Advances in Fuzzy Set Theory and Applications, North-Holland,

Amsterdam, Adaptation Learning and Optimization, pages 3–18. Springer Berlin Heidel-

berg.

4
Accelerating Convergence Towards the

Optimal Pareto Front 1

Abstract

Evolutionary algorithms have been very popular optimization methods for a wide variety

of applications. However, in spite of their advantages, their computational cost is still a

prohibitive factor in certain real-world applications involving expensive (computationally

speaking) fitness function evaluations. In this chapter, we adopt the observation that na-

ture’s survival of the fittest is not about exact measures of fitness; rather it is about rank-

ings among competing peers. Thus, by exploiting this natural tolerance for imprecision,

we propose here a new, fuzzy granules-based approach for reducing the number of neces-

sary function calls involving time consuming real-world problems. Our proposed approach

is compared with respect to the standard NSGA-II, using the Set Coverage, Hypervolume

and Generational Distance performance measures. Our results indicate that our proposed

approach is a very promising alternative for dealing with multi-objective optimization prob-

lems involving expensive fitness function evaluations.

1This chapter is based on:

• M. Davarynejad, J. Rezaei, J. Vrancken, J. van den Berg and Carlos A. Coello Coello, “Accelerating Con-

vergence Towards the Optimal Pareto Front”, in 2011 Congress on Evolutionary Computation (CEC’2011),

New Orleans, pp. 2107-2114, 2011.

67

68 4 Accelerating Convergence Towards the Optimal Pareto Front

4.1 Introduction

Optimization using metaheuristics has become a very popular research topic in the last

few years. Real-world problems, however, frequently have two or more (possibly conflict-

ing) objectives that we aim to optimize at the same time. Such problems are called multi-

objective and have been intensively studied using metaheuristics (particularly, evolutionary

algorithms) in the last few years [2].

As opposed to single-objective optimization problems in which we aim to find a single

optimum solution, in multi-objective optimization problems (MOOPs) the notion of opti-

mality changes, since there is normally no single solution that is the best for all the criteria.

The aim in this case is to find a set of solutions for which no objective can be improved

without worsening another. This set of solutions is known as the Pareto optimal set and

their vectors are said to be non-dominated. When plotted in objective function space, these

solutions are collectively known as the Pareto front.

A wide variety of multi-objective evolutionary algorithms (MOEAs) have been proposed

since the inception of this field in the mid-1980s [2, 7]. However, MOEAs are known to be

computationally expensive, since they normally require a high number of objective function

evaluations in order to produce a reasonably good approximation of the Pareto front of the

problem being solved. Nevertheless, relatively little research has been reported so far on the

development of techniques that reduce the computational cost of MOEAs (see [25]). This

chapter seeks to contribute to this area by introducing a fuzzy granules-based approach for

reducing the number of objective function evaluations required by a MOEA.

The remainder of this chapter is organized as follows. Section 4.2 provides some ba-

sic multi-objective optimization concepts. The previous related work is discussed in Sec-

tion 4.3. Section 4.4 presents the approach proposed in this chapter. To illustrate the ef-

ficiency of the proposed method, the performance results on ZDT1-6 test problem is pre-

sented in Section 6.5. The final section draws conclusions and considers implications for

future research.

4.2 Basic Concepts

We are interested in solving problems of the type2:

minimize f(x) := [f1(x), f2(x), . . . , fn(x)] (4.1)

subject to:

gi(x)≤ 0 i = 1,2, . . . ,q (4.2)

h j(x) = 0 j = 1,2, . . . , p (4.3)

where x is a vector of decision variables, fi : IRm → IR, i = 1, ...,n are the objective functions

and gi,h j : IRm → IR, i = 1, ...,q, j = 1, ..., p are the constraints of the problem.

To describe the concept of optimality, a few definitions are introduced.

2Without loss of generality, we will assume only minimization problems.

4.3 Previous Related Work 69

Definition 1. Given two vectors x,x∈ IRm, x dominates x (denoted by x≺ x) if fi(x)≤ fi(x)
for i = 1, . . . ,n, and that x ̸= x.

Definition 2. A vector of decision variables x ∈ X ⊂ IRm is nondominated with respect to

X , if there does not exist another x′ ∈ X such that x′ ≺ x.

Definition 3. A vector of decision variables x∗ ∈ F ⊂ IRm (F is the feasible region) is

Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P ∗ is defined by:

P
∗ = {x ∈ F |x is Pareto-optimal}

Definition 5. The Pareto Front P F ∗ is defined by:

P F
∗ = {f(x) ∈ IRn|x ∈ P

∗}
The problem is to find the Pareto optimal set from the set F of all the decision variable

vectors that satisfy (4.2) and (4.3). Note however that in practice, not all the Pareto optimal

set is normally desirable (e.g., it may not be desirable to have different solutions that map

to the same values in objective function space) or achievable.

4.3 Previous Related Work

Evolutionary algorithms usually require such a large number of function calls that this fre-

quently makes them computationally prohibitive in some real-world applications. When

dealing with MOOPs, this issue becomes more critical, because more objectives are in-

volved and this multiplies the computational cost, while also making the search more dif-

ficult. For dealing with expensive objective functions, it is relatively common to rely on

approximate models that allow us to simplify the representation of real-world complex be-

haviors. 3 Approximation techniques may estimate each of the individuals’ fitness value on

the basis of previously observed objective function values of neighboring individuals. A

wide range of approximation and meta-model techniques have been adopted in combina-

tion with evolutionary algorithms, including Kriging [24], artificial neural networks [26],

and radial-basis-function networks [18]. Other authors have adopted fitness inheritance

[21], cultural algorithms [15] and other fitness function approximation techniques [14] for

the same purpose. Next, we will briefly review the most representative work on the use of

mechanisms for handling expensive objective functions with MOEAs reported in special-

ized literature.

Fitness inheritance, a popular class of fitness approximation method, was originally

introduced by Smith et al. [27] and is a very simple technique that works as follows: when

assigning fitness to an individual, some times the objective function is evaluated as usual,

but the rest of the time, the fitness assigned to the individual is the average (or a weighted

average) of the fitness of its parents. This fitness assignment scheme operates based on the

3This is based on the assumption that approximate models require small computational resources compared

to the cost of complex simulations, which is normally the case when considering real-world problems.

70 4 Accelerating Convergence Towards the Optimal Pareto Front

assumption of similarity between an offspring and its parents. Clearly, fitness inheritance

cannot be applied all the time, since some true fitness function values are required in order

to obtain enough information to guide the search. This approach uses a parameter called

inheritance proportion, which regulates how many times the fitness has to be approximated.

Very few authors have reported the use of fitness inheritance in MOOPs. Ducheyne et

al. [11] tested the performance of both average and weighted average fitness inheritance

approaches and concluded that the usefulness of this technique was limited to cases in which

the Pareto front is convex and continuous. Ducheyne et al. [10] also concluded that for non-

convex Pareto fronts, fitness inheritance produces a slower convergence to the true Pareto

front than when the approach is not adopted. Other authors, however, have successfully

applied fitness inheritance to more complicated test problems having non-convex Pareto

fronts (see [21]).

Another approach for dealing with expensive objective functions is based on learning

and interpolation from representative small datasets of the true objective functions values

in the desired design space which is known as functional approximation [14]. Function

approximation methods provide a mapping between design space and objective functions

space that may be multi-dimensional. The accuracy of these models depends greatly on the

number of sample data points used and their location in the multi-dimensional space. Some

examples of this sort of approach are the following: the response surface methodology

that uses low-order polynomials and the least square estimations [12, 13, 17] and Gaussian

processes (also known as Kriging) that build probability models by exploiting information

recorded and use them to estimate the function values of new candidate solutions [3].

Artificial Neural networks (ANNs) can also be used for dealing with expensive objec-

tive functions. In fact, ANNs can be considered one of the best approaches to approximate

a generic IRm ⇒ IRn function4, where m and n represent the number of decision variables

and number of objectives, respectively. Although nonlinear interpolation can be used, it

is shown that with a number of decision variables higher than 10, the interpolation prob-

lem becomes almost not tractable [20]. ANNs are successfully used for building approxi-

mate models in a number of complex multiplicative optimization problems. As an example,

in [1], a generic supersonic aircraft configuration with two main goals (maximization of the

total range of the aircraft and minimization of the ground sonic boom) and a number of

buildability and mission constraints (such as structural integrity of the aircraft, take-off and

landing field length) is optimized using ANNs to generate inexpensive surrogates. The ap-

proximation is used only where this is warranted. Using Latin Hypercube Sampling (LHS),

300 sample data were generate via CFD (Computational Fluid Dynamics) simulation are

fitted using a single hidden layer perceptron with sigmoid activation functions to provide

a general nonlinear higher fidelity model. In another study, Poloni et al. [20] used a com-

bination of GAs and ANNs with a modified backpropagation algorithm, and a local search

method to optimize the design of a sailing yacht fin keel which is a complex design problem

in fluid dynamics. The ANN acted as a model for 3D Navier-Stokes simulation of the fin

keel while cruising.

For more information on approaches for dealing with expensive objective functions in

the context of multi-objective optimization, interested readers should refer to [25].

4If they are provided with sufficient structural complexity and a rich training data set.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 71

4.3.1 Final Remarks on Fitness Approximation

In most of the fitness approximation models currently available, the main problem is the

lack of sufficient training data and hence the failure to reach a model with sufficient approx-

imation accuracy. Since the evaluation of the original fitness function, in many practical

problems, is obtained by some sort of analysis (i.e., fluid mechanics analysis, thermody-

namic analysis) that is computationally expensive, the approximate model may be of low

fidelity. Furthermore, if the training data does not cover the full domain range, large errors

may occur due to extrapolation. Errors may also occur when the set of training points is not

sufficiently dense and uniform. Here, we adopt the concept of information granulation as

an attempt to address these difficulties.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG)

Granular computing is regarded as the processing of granules of information that are aggre-

gated due to their indistinguishability, similarity, proximity or functionality in some con-

text [29]. It is a vehicle for handling information, as well as a lack of it (uncertainty), at a

level of coarseness that can solve problems appropriately and efficiently [5]. In problems

with incomplete, uncertain or vague information, the practical necessity; and in problems

with huge detailed information, the simplicity are the main reasons of popularity, respec-

tively, of granular computing. It is widely used in many fields including interval analy-

sis, Dempster-Shafer theory of belief functions, cluster analysis, optimization and problem

solving [23], machine learning, bioinformatics, among other fields [19]. The concept of

information granulation was proposed by Zadeh [30] (in the context of fuzzy set theory) as

a technique by which a class of points (objects) is partitioned into granules. The fuzziness

of granules and their attributes is characteristic of the ways by which human concepts and

reasoning are formed, organized and manipulated. The concept of a granule is more general

than that of a cluster, potentially giving rise to several conceptual structures in various fields

of science as well as mathematics.

In the present chapter, with the aim to reducing the computational cost of MOOPs, the

concept of information granulation and approximation in the context of rough set theory is

studied to exploit the natural tolerance of EAs in fitness function computations. Nature’s

survival of the fittest is not about exact measures of fitness; rather it is about rankings among

competing peers. By exploiting this natural tolerance for imprecision and aiming to exploit

this uncertainty [16], optimization performance can be preserved by computing fitness only

selectively and only to keep this ranking among individuals in a given population.

In the proposed algorithm, a pool of solutions with exact fitness values are maintained.

Based on the maximum similarity of a new candidate solution to this pool, the fitness of

individuals will be either approximated or calculated explicitly. If a new individual is suf-

ficiently similar to a known fuzzy granule, then that granules’ fitness is used instead as a

crude estimate. Otherwise, that individual is added to the pool as a new granule. In this

fashion, regardless of the competitions’ outcome, the fitness of the new individual is always

a physically realizable one, even if it is a crude estimate and not an exact measurement.

The pool size as well as each granules’ radius of influence depends on the utility of each

granule [6].Furthermore, to prevent the pool from growing too large, pool members are

competing for survival and members with lower life index are gradually replaced by new

72 4 Accelerating Convergence Towards the Optimal Pareto Front

Figure 4.1: A number of gaussian granules with different widths in a 2-D solution space.

Once a new individual is sufficiently similar to a granule in the granule pool,

then that granules’ fitness is used instead as a crude estimate. Otherwise, that

individual is added to the pool as a new fuzzy granule. Each granules’ radius

of influence is determined based on equation (4.7).

granules. By splitting up the pool into two parts, the new granules are given a chance to

survive a number of steps [4].

4.4.1 Algorithm’s Structure

The preceding section provided a general overview of our approach. Going in more detail

now, the algorithm’s computation steps are as follows:

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . , x1

t } of decision

vectors, where, xi
j = {xi

j,1, xi
j,2, . . . ,x

i
j,r, . . . , xi

j,m} is the jth individual in the ith generation,

xi
j,r the rth component of xi

j, m the number of components of decision vector and t is the

population size.

Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ IRm, σk ∈ IR, Lk ∈ IR, k = 1, . . . ,NG}. G is initially empty. Ck is an m-dimensional

vector of centers, σk is the width of membership function (WMF) of the kth fuzzy granule,

and Lk is the granule’s life index. A number of granules with different widths are shown in

Figure 4.1.

Step 3:

• Choose the phenotype of chromosomes, xi
j, as the center of granules, Ck.

• Rank P1 and goto step 8.

Step 4: Define the membership µk,r of each xi
j,r to each granule member by a Gaussian

similarity neighborhood function according to

µk,r

(

xi
j,r

)

= exp

(

−
(

xi
j,r − ck,r

)2

(σk)
2

)

, k = 1,2, . . . ,NG , (4.4)

where NG is the number of fuzzy granules.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 73

Step 5: Compute the average similarity of the new decision vector xi
j = {xi

j,1, xi
j,2, . . . ,x

i
j,r,

. . . , xi
j,m} to each granule Gk using equation (4.5)

µ j,k =

m

∑
r=1

µk,r

(

xi
j,r

)

m
(4.5)

Step 6: Either calculate the exact fitness value of xi
j or estimate it by associating it to one

of the granules in the pool in case there is a granule in the pool with similarity value higher

than a predefined threshold, i.e.,

f
(

xi
j

)

=







f (Ck) if max
k∈{1,2,...,NG}

{µ j,k}> θi ,

f
(

xi
j

)

otherwise.
(4.6)

where f (Cx) is the fitness function value of the fuzzy granule and f (xi
j) is the real fitness

calculation of the individual.

Remark: θi is a predefined (time-varying) threshold that controls the minimum similar-

ity a solution has to have with a pool member to be approximated. Here, θi is considered as

a constant value for all simulations, and is set to 0.9. In general, as the population matures

steadily, the algorithm needs to be more selective (to calculate the exact fitness more often),

suggesting the need for a gradual increase of θi. Alternatively, if

max
k∈{1,2,...,NG}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 4 to 7.

Step 8: When termination/evolution control criteria are not met:

• Create offspring population.

• Rank the granule pool.

• Assign σk based on equation (4.7).

σk = σmin ∗ ((1−grσ)+grσ ∗ rank(k)) (4.7)

where rank(k) is the rank of the granule k among the granule set, and σmin ∈R>0 is a

proportional constant that defines the minimum spread of granules. σmin is a problem

dependent design parameter.

Remark: σk, the distance measurement parameter that controls the degree of similar-

ity between two individuals, controls the radius of influence of each granule. Instead

of drawing the radius directly from the fitness (as in the single-objective optimization

case [4]), as objectives are often non-commensurable and conflicting, dominance-

based ranking is used. The spread of granules grow as their rank among granule

members increases, with a rate of grσ. Here, grσ is set to 0.1 and σmin ∈ {2n|n ∈ Z}.

• Goto step 4.

74 4 Accelerating Convergence Towards the Optimal Pareto Front

4.4.2 Controlling the size of the granule pool and protecting new pool

members through speciation

As the evolutionary procedures are applied, it is inevitable that new granules are generated

and added to the pool. Depending on the complexity of the problem, the size of this pool

can be excessive and become a computational burden itself. To prevent such unnecessary

computational effort, a life index is introduced in order to appropriately decrease the size of

the pool. In other words, it is better to remove granules that do not win new individuals,

thereby producing a bias against individuals that have low fitness and were likely produced

by a failed mutation attempt. Lk is initially set to 0 and subsequently updated as below,

Lk =

{

Lk +M if k = K ,

Lk otherwise ,
(4.8)

where M is the life reward of the granule and K is the index of the winning granule for each

individual at generation i. Here, M is set at 1. At each table update, only the NG granules

with the highest Lk index are kept, and the others are discarded. In [5], an example has been

provided that illustrates the competitive granule pool update law. Adding a new granule to

the granule pool and assigning a life index to it, is a simple way of controlling the size of the

granule pool, since the granules with the lowest life index will be removed from the pool.

However, it may happen that the new granule is removed, even though it was just inserted

into the pool. In order to prevent this, the pool is split into two parts with sizes εNG and

(1− ε)NG. The first part is a FIFO (First In, First Out) queue and new granules are added

to this part. If it grows above εNG, then the top of the queue is moved to the other part.

Removal from the pool takes place only in the (1− ε)NG part. In this way, new granules

have a good chance to survive a number of steps. In all of the simulations that are conducted

here, ε is set to 0.1.

4.5 Numerical results

In order to validate our proposed approach, we adopted the Zitzler-Deb-Thiele (ZDT) test

problems [32] and compared our results with respect to those obtained with the standard

NSGA-II [8]. The following parameters were adopted for our experiments:

• Population size = 50.

• Crossover rate = 0.9 (SBX).

• Binary tournament selection.

• Mutation rate of 1/m, m = number of decision variables.

• Distribution indices for crossover ηc and mutation ηm: ηc = 20 and ηm = 20.

For assessing our results we adopted three performance measures: (1) Generational

Distance (GD) [28], which measures how far the given solutions are, on average, from the

true Pareto front, (2) the Hypervolume indicator IH (also known as Lebesgue measure or

S-metric) [31], which measures the volume of the dominated portion of the objective space

4.5 Numerical results 75

Table 4.1: AFFG-NSGA-II utilized parameter values and reference points used for calcu-

lating IH .

Problem σmin NG Reference point

ZDT1 2−4 100 [1.1,3.5]
ZDT2 2−5 100 [1.1,5.0]
ZDT3 2−5 100 [1.1,6.0]
ZDT4 2−6 100 [1.1,140]
ZDT6 2−5 100 [1.1,9.0]

Table 4.2: Mean and standard deviation of the GD performance measure.

Problem AFFG-NSGA-II NSGA-II

mean, σ mean, σ

ZDT1 0.010165,0.005744 0.102095,0.029859

ZDT2 0.018143,0.008509 0.716683,0.365823

ZDT3 0.098656,0.022421 0.236176,0.048486

ZDT4 11.160124,4.239201 20.191547,11.658247

ZDT6 0.768217,0.143028 1.328310,0.224595

which is enclosed by the reference set and (3) Set Coverage (SC) [32], which measures the

percentage of solutions from one algorithm that are covered by the solutions of the other. To

measure the Hypervolume, a single reference point, R = r ∈ IRm was considered in all cases.

This point corresponds to the worst value in each dimension of the fronts. The reference

values we used here are given in Table 4.1.

The performance measures to assess the results are presented in Tables 4.2, 4.3 and 4.4.

The measures are evaluated by conducting 30 independent runs per test problem per algo-

rithm. Each run is restricted to 1,000 fitness function evaluations. Each table displays the

average and standard deviation of each of the performance measures.

Table 4.3: Mean and standard deviation of the IH performance measure.

Problem AFFG-NSGA-II NSGA-II

mean, σ mean, σ

ZDT1 3.408204,0.052768 2.689226,0.164173

ZDT2 4.524421,0.110119 2.227951,0.350130

ZDT3 6.106243,0.198963 4.516725,0.267211

ZDT4 108.878924,10.460062 100.619288,9.466605

ZDT6 3.229885,0.896935 1.178803,0.176150

76 4 Accelerating Convergence Towards the Optimal Pareto Front

Table 4.4: Mean and standard deviation of the SC performance measure.

Problem AFFG-NSGA-II NSGA-II-AFFG

mean, σ mean, σ

ZDT1 1.000000,0.000000 0.000000,0.000000

ZDT2 1.000000,0.000000 0.000000,0.000000

ZDT3 0.995745,0.023307 0.003401,0.018630

ZDT4 0.613805,0.455574 0.324147,0.427815

ZDT6 0.891819,0.134759 0.033209,0.081798

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.2: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right

panel) for the ZDT1 test problem using 1,000 real fitness function evaluations.

Figures 4.2 to 4.6 present results of 30 independent runs of the standard NSGA-II and

the AFFG-NSGA-II, adopting the test problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6

(ZDT5 is a binary problem and was, therefore, omitted here), with a budget of only 1,000

fitness function evaluations. Each color corresponds to a single run.

The results clearly show that the proposed AFFG approach outperforms the standard

NSGA-II. According to the Wilcoxon rank-sum test, the results of our proposed approach

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.3: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right

panel) for the ZDT2 test problem using 1,000 real fitness function evaluations.

4.5 Numerical results 77

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

Figure 4.4: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right

panel) for the ZDT3 test problem using 1,000 real fitness function evaluations.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Figure 4.5: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right

panel) for the ZDT4 test problem using 1,000 real fitness function evaluations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Figure 4.6: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right

panel) for the ZDT6 test problem using 1,000 real fitness function evaluations.

78 4 Accelerating Convergence Towards the Optimal Pareto Front

0 1000 2000 3000 4000 5000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Number of fitness evaluation

H
yp

er
vo

lu
m

e

NSGA−II
AFFG−NSGA−II

Figure 4.7: Convergence of the hypevolume metric for the ZDT1 problem (30 distinct runs).

are better with a significance level of 5%. To further investigate the convergence speed of

the proposed approach, in Figure 4.7, the changes in hypervolume metric is plotted against

the number of fitness function evaluations, for the ZDT1 problem.

4.6 Conclusions and Future Work

By combining the concepts of survival of the fittest and fuzzy granulation, which enables a

faster convergence without degrading the estimated set of solutions, this chapter presents an

approach to speed up convergence towards the Pareto optimal front of multi-objective op-

timization problems. With the proposed approach, we can exploit the information obtained

from our previous objective function evaluations. Our results indicate that the proposed

approach is very promising, since it can achieve a faster convergence than the standard

NSGA-II in the test problems adopted. However, a more thorough validation is still re-

quired (adopting other problems such as the DTLZ test problems [9]). It is also desirable

to perform comparisons with respect to other fitness approximation methods such as curve

fitting, fitness inheritance and artificial neural networks. As part of our future work, we are

interested in studying the effect of the number of granules on the convergence rate. Addi-

tionally, in order to further test the robustness of our proposed approach, we want to study

its sensitivity to its parameters and its scalability when increasing the number of decision

variables and objectives. Adaptively changing θi and being more selective as the population

matures (to calculate the exact fitness more often), is indeed part of our ongoing research.

Finally, we wish to apply our proposed approach to real-world problems in the field of

supplier selections [22].

4.6 Conclusions and Future Work 79

Acknowledgment

This research received funding from the European Community’s Seventh Framework Pro-

gramme within the ”Control for Coordination of Distributed Systems” (Con4Coord - FP7/2007-

2013 under grant agreement no. INFSO-ICT-223844), the Next Generation Infrastructures

Research Program of Delft University of Technology and the Mexican CONACyT Project

No. 103570.

References

[1] Alonso, J., LeGresley, P., and Pereyra, V. (2009). Aircraft design optimization. Mathe-

matics and Computers in Simulation, 79(6):1948–1958.

[2] Coello Coello, C., Lamont, G., and Van Veldhuizen, D. (2007). Evolutionary Algo-

rithms for Solving Multi-Objective Problems. Springer, New York, second edition. ISBN

978-0-387-33254-3.

[3] D’Angelo, S. and Minisci, E. (2005). Multi-objective evolutionary optimization of sub-

sonic airfoils by kriging approximation and evolutionary control. In 2005 IEEE Congress

on Evolutionary Computation (CEC’2005), volume 2, pages 1262–1267, Edinburg, Scot-

land.

[4] Davarynejad, M., Ahn, C., Vrancken, J., van den Berg, J., and Coello Coello, C. (2010).

Evolutionary hidden information detection by granulation-based fitness approximation.

Applied Soft Computing, 10(3):719–729.

[5] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general frame-

work for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE

Congress on Evolutionary Computation, pages 951–956. IEEE.

[6] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-

ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,

R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for

Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[7] Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John

Wiley & Sons, Chichester, UK. ISBN 0-471-87339-X.

[8] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiob-

jective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation,

6(2):182–197.

[9] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable Test Problems for

Evolutionary Multiobjective Optimization. In Abraham, A., Jain, L., and Goldberg, R.,

editors, Evolutionary Multiobjective Optimization. Theoretical Advances and Applica-

tions, pages 105–145. Springer, USA.

[10] Ducheyne, E., Baets, B. D., and Wulf, R. D. (2008). Fitness inheritance in multiple

objective evolutionary algorithms: A test bench and real-world evaluation. Applied Soft

Computing, 8(1):337–349.

80 4 Accelerating Convergence Towards the Optimal Pareto Front

[11] Ducheyne, E., De Baets, B., and De Wulf, R. (2003). Is Fitness Inheritance Useful

for Real-World Applications? In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K.,

and Thiele, L., editors, Evolutionary Multi-Criterion Optimization. Second International

Conference, EMO 2003, pages 31–42, Faro, Portugal. Springer. Lecture Notes in Com-

puter Science. Volume 2632.

[12] Goel, T., Haftka, R., Shyy, W., Queipo, N., Vaidyanathan, R., and Tucker, K. (2007).

Response surface approximation of pareto optimal front in multi-objective optimization.

Computer Methods in Applied Mechanics and Engineering, 196(4-6):879–893.

[13] Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., and Tucker, K. (2004).

Response surface approximation of pareto optimal front in multiobjective optimization.

Technical Report 2004-4501, AIAA.

[14] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing, 9(1):3–12.

[15] Landa Becerra, R. and Coello Coello, C. (2006). Solving Hard Multiobjective Opti-

mization Problems Using ε-Constraint with Cultured Differential Evolution. In Runars-

son, T. P., Beyer, H.-G., Burke, E., Merelo-Guervós, J. J., Whitley, L. D., and Yao, X.,

editors, Parallel Problem Solving from Nature - PPSN IX, 9th International Conference,

pages 543–552. Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Ice-

land.

[16] Lim, D., Jin, Y., Ong, Y., and Sendhoff, B. (2010). Generalizing surrogate-assisted

evolutionary computation. IEEE Transactions on Evolutionary Computation, 14(3):329–

355.

[17] Madsen, J., Shyy, W., and Haftka, R. (2000). Response surface techniques for diffuser

shape optimization. AIAA journal, 38(9):1512–1518.

[18] Nakayama, H., Arakawa, M., and Washino, K. (2003). Optimization for black-box

objective functions. In Pardalos, P. M., Tseveendorj, I., and Enkhbat, R., editors, Opti-

mization and Optimal Control, pages 185–210. World Scientific, Singapore.

[19] Pedrycz, W., Skowron, A., and Kreinovich, V. (2008). Handbook of granular comput-

ing. Wiley-Interscience New York, NY, USA.

[20] Poloni, C., Giurgevich, A., Onesti, L., and Pediroda, V. (2000). Hybridization of

a multi-objective genetic algorithm, a neural network and a classical optimizer for a

complex design problem in fluid dynamics. Computer Methods in Applied Mechanics

and Engineering, 186(2-4):403–420.

[21] Reyes Sierra, M. and Coello Coello, C. (2005). A Study of Fitness Inheritance and

Approximation Techniques for Multi-Objective Particle Swarm Optimization. In 2005

IEEE Congress on Evolutionary Computation (CEC’2005), volume 1, pages 65–72, Ed-

inburgh, Scotland. IEEE Service Center.

[22] Rezaei, J. and Davoodi, M. (2011). Multi-objective models for lot-sizing with supplier

selection. International Journal of Production Economics, 130(1):77–86.

4.6 Conclusions and Future Work 81

[23] Rowhanimanesh, A. and Akbarzadeh-T, M.-R. (2010). Perception-based evolution-

ary optimization: Outline of a novel approach to optimization and problem solving.

In IEEE International Conference on Systems Man and Cybernetics, pages 4270–4275.

IEEE Press.

[24] Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). Design and analysis of

computer experiments. Statistical science, 4(4):409–423.

[25] Santana-Quintero, L., Arias Montaño, A., and Coello Coello, C. (2010). A Review

of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Opti-

mization. In Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Expen-

sive Optimization Problems, pages 29–59. Springer, Berlin, Germany. ISBN 978-3-642-

10700-9.

[26] Smith, M. (1993). Neural Networks for Statistical Modeling. von Nostrand, Reinhold,

New York, USA.

[27] Smith, R., Dike, B. A., and Stegmann, S. A. (1995). Fitness inheritance in genetic

algorithms. In SAC ’95: Proceedings of the 1995 ACM symposium on Applied computing,

pages 345–350, New York, NY, USA. ACM Press.

[28] Veldhuizen, D. V. (1999). Multiobjective Evolutionary Algorithms: Classifications,

Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer

Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-

Patterson AFB, Ohio.

[29] Yao, Y. (2001). Information granulation and rough set approximation. International

Journal of Intelligent Systems, 16(1):87–104.

[30] Zadeh, L. A. (1979). Fuzzy sets and information granularity. In Advances in Fuzzy

Set Theory and Applications, pages 3–18. North Holland, New York, USA.

[31] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods

and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,

Switzerland.

[32] Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195.

“You cannot improve what you cannot measure.”

lord kelvin

6
Evaluating Center-Seeking and

Initialization Bias: The case of Particle

Swarm and Gravitational Search

Algorithms 1

Abstract

Complex optimization problems that cannot be solved using exhaustive search require effi-

cient search metaheuristics to find optimal solutions. In practice, metaheuristics suffer from

various types of search bias, the understanding of which is of crucial importance, as it is

directly pertinent to the problem of making the best possible selection of solvers. In this

paper, two metrics are introduced: one for measuring center-seeking bias (CSB) and one for

initialization region bias (IRB). The former is based on “ξ-center offset”, an alternative to

“center offset”, which is a common but inadequate approach to analyzing the center-seeking

behavior of algorithms, as will be shown. The latter is proposed on the grounds of “region

1This chapter is based on:

• M. Davarynejad, J. van den Berg, J. Rezaei, “Evaluating Center-Seeking and Initialization Bias: The case

of Particle Swarm and Gravitational Search Algorithms”, Information Sciences, 278:(802-821), 2014.

• Z. Forghany, M. Davarynejad, B.E. Snaar-Jagalska, “Gene Regulatory Network Model Identification Using

Artificial Bee Colony and Swarm Intelligence”, in 2012 Congress on Evolutionary Computation (CEC’12),

Brisbane, Australia, pp. 949954, 2012 .

• M. Davarynejad, Z. Forghany, J. van den Berg, “Mass-Dispersed Gravitational Search Algorithm for

Gene Regulatory Network Model Parameter Identification”, in 2012 Simulated Evolution And Learning

(SEAL’12), Volume 7673 of Lecture Notes in Computer Science. pp. 62-72, 2012 .

107

108 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

scaling”. The introduced metrics are used to evaluate the bias of three algorithms while

running on a test bed of optimization problems having their optimal solution at, or near,

the center of the search space. The most prominent finding of this paper is considerable

CSB and IRB in the gravitational search algorithm (GSA). In addition, a partial solution

to the center-seeking and initialization region bias of GSA is proposed by introducing a

“mass-dispersed” version of GSA, mdGSA. mdGSA promotes the global search capability

of GSA. Its performance is verified using the same mathematical optimization problem, next

to a gene regulatory network parameter identification problem. The results of these experi-

ments demonstrate the capabilities of mdGSA in solving real-world optimization problems.

6.1 Introduction

Consider a search scenario in a finite continuous search space E ⊂ X defined by

E =
D⊗

d=1

[Ld
x ,U

d
x], (6.1)

with the objective of locating x∗ ∈ E, where f (x∗) is the extremum of a function f (x) :

E → IR, and where Ld
x and Ud

x are respectively the lower and upper bound of the search

domain at dimension d. Optimization problems are to be found in such diverse arenas

as engineering, business, medicine, etc. [5]. Here we assume that the only information

available to the search for the optimal design variable is a measure to discriminate solutions,

i.e., for any point x ∈ E, the associated objective (fitness) value f (x) is assumed to be the

only information available to locate x∗. Without loss of generality, a minimization problem

is considered.

In contrast to exhaustive search which looks into every entry in the search space, meta-

heuristics [22] are strategies that guide the search process iteratively, in many cases by

making a trade-off between exploration and exploitation. This is an important notion when

it comes to allocating scarce resources to the exploration of new possibilities and the ex-

ploitation of old certainties.

The evolution of life on earth, which has been the original inspiration for many types of

metaheuristics, has resulted in the family of population-based stochastic search algorithms

termed “evolutionary algorithms”. Common to all population-based metaheuristics are (i)

a measure to discriminate solutions, and (ii) a set of mechanisms to modify solutions by

various operators.

There are two distinct classes of nature-inspired population-based optimization algo-

rithms that are of our interest: evolutionary algorithms (EA), and swarm intelligence (SI)-

based algorithms. Some popular members of the former class are genetic algorithm (GA) [24]

and differential evolution (DE) [45, 56]. Successful instances of swarm intelligence-based

algorithms are particle swarm optimization (PSO) [27] and the gravitational search algo-

rithm (GSA) [46].

Studying the properties of these algorithms, it turns out that some population-based

optimization techniques suffer from a specific search bias [11, 35]: they tend to perform

best when the optimum is located at or near the center of the search space. General purpose

optimizers are those which make no assumption on the problem at stake. Consequently, if

we want to compare the quality of the solutions found by a set of metaheuristics for a

6.2 A metric for measuring center-seeking bias 109

series of benchmark problems with optimal solution near the center of the search space, the

comparison becomes unfair.

To remedy this unfairness, the so-called center offset (CO) [36] approach was proposed

which changes the borders of the search space in such a way that the optimal solution is

no longer located in the center of the search space. Basically, the CO approach changes the

search space of the original problem by reducing it on one side and expanding it at the other.

When comparing a set of algorithms qualitatively, the comparison is valid since interference

tends to be reduced when all the contenders are submitted to the same set of benchmarks,

no matter if the shifting has introduced some degree of increase/decrease in the complexity

of the search. Our goal, here, is to supplement the comparison by developing quantitative

measures that can assist the observer in evaluation of the “degree” of CSB of a certain

search algorithm. Quantitative measures are succinct and are the preferred disclosure form,

not only for a) a comparison of the degree of CSB in a set of search algorithms, but also

when the task is b) to examine if a single search algorithm has any CSB at all.

On the basis of these observations, we decided to examine generic methods for evaluat-

ing the search bias of different algorithms. In this paper, we limit ourselves to two metrics;

one for measuring center-seeking bias, and one for initialization bias. These metrics are

used to evaluate the behavioral bias of several algorithms related to swarm optimization and

gravitational search.

The remainder of this paper is organized as follows. Section 6.2.1 elaborates on center

offset and its assumptions, and presents an alternative. Section 6.2.2 presents a metric to

both measure and compare the center-seeking bias of optimization algorithms. A metric to

measure initialization region bias is then presented in Section 6.3. In Section 6.4.1 and 6.4.2

PSO and GSA are briefly summarized. The mass assignment in GSA is analyzed and chal-

lenged in Section 6.4.3, and an alternative is proposed. The experimental setup adopted

for the evaluation and comparison, followed by the major observations derived form the

experiment, are presented in Section 6.5. Section 6.6 presents discussions and provides a

framework that enables a fair comparison of optimization heuristics. The last section high-

lights conclusions and provides suggestions for future research.

6.2 A metric for measuring center-seeking bias

6.2.1 Understanding the assumptions underlying center offset

According to the No Free Lunch theorem [60], all learning systems will expose equal per-

formance over all possible cost functions. This implies that, in order to efficiently solve an

optimization problem, they should be tailored to the salient problem-specific characteristics.

Where there is no available information on the problem at hand, as with various real-world

applications, some search biases known to us are not often of service. Such biases include

center-seeking (CS) behavior and initialization region bias (IRB), the foci of this study.

When comparing nature-inspired metaheuristic algorithms, a symmetric search space

can be misleading when the optimal solution is located at, or near, the center of the search

space. In such a case, one must account for CS behavior in order to draw valid conclusions

from an experiment [8]. One attempt to deal with CS bias is called center offset (CO). This

is a common approach to negating the centrist bias of an optimization algorithm [3]. The

110 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

1.5

Design space, x

f(
x)

a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

1.5

Design space, x

f(
x−

.0
5

)

b)

Optimal Solution

Figure 6.1: Change in complexity as a result of CO. a) The original function, b) The trans-

formed function.

underlying assumption of CO is that the complexity of a problem does not change as a result

of moving the optimal solution from the center of the search space; this is an assumption

that is discussed in greater detail below.

When applying CO, the optimization problem f (x) is changed to f (x−C) where C is

the location of the new center. CO is equivalent to expanding the search space from one side,

for each dimension d, and to shrinking it on the other side, without changing the distance

∥Ud
x −Ld

x∥ between the lower bound Ld
x and the upper bound Ud

x . When the objective of a

test is to measure the search bias of an algorithm, CO is not an adequate approach. This is

because a change in the complexity of a problem is not explicitly controlled: without any

additional information, the complexity of the problem might increased, decreased, or even

remained the same. As a consequence, any observed difference in the performance of an

algorithm cannot, to any degree of certainty, be associated with the CS bias of the algorithm;

it may also have been caused by an (unknown) change in the problem complexity.

Figure 6.1 shows an example of an increase in problem complexity (due to an increase

in the number of local optimal solutions) as a result of shifting the search window when the

objective is to locate the minimum of the following function:

f (x) = 10(x−0.2)2 + sin(
π

x
),0.1 ≤ x ≤ 0.3. (6.2)

In this case, due to an increased problem complexity, the average performance of any

metaheuristic is expected to deteriorate whether or not the algorithm possesses CS bias.

Consequently no hypothesis can be made on the CS behavior of an optimization algorithm.

Assuming we know that the problem complexity decreases, some decision making

around CS behavior becomes possible. If a certain algorithm shows a better performance,

one can conclude that this algorithm has no observable CS bias, since we would otherwise

6.2 A metric for measuring center-seeking bias 111

have observed a deterioration in its performance, i.e., a deterioration in the best found fit-

ness during optimization. In this study, the ξ-CO approach is introduced to remove the

uncertainties on change in problem complexity.

In ξ-CO, the search space is downsized asymmetrically, as a result of which the problem

complexity always decreases and the algorithm is expected to locate a near optimal solution

more quickly and with greater precision if there is no center-seeking bias. This makes it

possible to test the hypotheses on CS behavior of an optimization algorithm considering a

benchmark problem with (i) a symmetric search space and (ii) the optimal solution near the

center of the search space. Let us assume that Ld
x =−Ud

x and that Ud
x > 0, as is the case for

most of the problems studied here. In ξ-CO, the search space is downsized asymmetrically

by modifying the lower bound of the search space Ld
x according to

Ld
x = Ld

x +
ξ

100
× ||Ud

x −Ld
x ||

2
, (6.3)

where ξ ∈ [ξL,ξU] is the percentage of downsizing the search space and where ξL and ξU

are the predefined lower and upper bound of ξ, respectively.

Observe that CO is only worthwhile for optimization problems the support of which

extends outside of the initial boundary. With the proposed ξ-CO approach this shortcoming

does not arise.

6.2.2 A metric for center-seeking bias

After identifying ξ-CO as an appropriate approach for analyzing CS behavior of optimiza-

tion heuristics, there is still a need to quantify the observations on the CS bias behavior,

i.e., a metric is needed. By executing a series of runs when gradually increasing, with a

predefined step size of ξs, the percentage ξ of downsizing the search space from a lower

limit ξL to an upper limit ξU , one can measure the best-fitness each optimization algorithm

can attain. Because randomly chosen initializations affect the outcome, experiments under

equal conditions are usually repeated several times, say r f time, yielding a data of the form
(

ξ, f
ξ
r

)

∈ IR2 when r ∈ [1,r f]. Based on these observations, an estimation of best-of-run f̂ ξ

as function of ξ

f̂ ξ = CSB
ξL−ξU

ξs
.ξ+ c1 (6.4)

can be calculated, where CSB
ξL−ξU

ξs
is the slope of the regression line. The slope CSB

ξL−ξU

ξs

has been selected as the metric to analyze CS behavior of optimization heuristics. For min-

imization problems, in case CSB
ξL−ξU

ξs
≥ 0, the best fitness found increases, implying the

presence of CS bias behavior (because the quality of the solutions found does not improve

when complexity is reduced). Similarly, in case CSB
ξL−ξU

ξs
< 0, the best fitness found de-

creases, implying that there is no observable CS bias behavior.

In special cases, ξ may be changed from its lower limit to its upper limit without inter-

mediate steps. In this case the corresponding metric is referred to as CSBξL,ξU . Comparing

CSBξL,ξU and CSB
ξL−ξU

ξs
, the latter has a greater generalization ability and is the preferred

metric for comparing algorithms under study.

Note, finally, that the proposed metric is not restricted to situations where the search

space is downsized according to ξ-CO. The original CO approach may still be used, namely,

112 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

in cases where the problem at hand is well-known and the problem complexity due to center

offset remains unchanged. Under such circumstances, the metric CSB
ξL−ξU

ξs
can be used as

well. In that case, ξ ∈ [ξL,ξU] is the percentage by which the center of the search space is

offset.

6.3 A metric for initialization region bias

Most of today’s real-world optimization problems are formulated in environments that un-

dergo continual change, referred to as dynamic optimization problems [2]. When the global

optimal solution changes, the population members have to move along an extended path

with many local optima. To test the sensitivity of PSO on the search initialization, as well

as its ability to move from the initial search space to more promising regions, Angeline [1]

proposed reducing the initialization region, referred to as Region Scaling (RS) [36]. This

initialization is adopted here as well, where the algorithm is initialized deliberately in a

portion of the search space. A notable example of a class of algorithms suffering from suf-

ficiently generating offsprings outside a given initial population, specially when the size of

the population is small relative to the search space, is GA with Unimodal Normal Distribu-

tion Crossover (UNDX) [40].

Region Scaling (RS) [36] is an approach to qualitatively observe if a search algorithms

has any IRB. By shrinking the initialization region (IR), an algorithm with no IRB will

perform not worse than when the IR covers the entire design space. In order to quantify

the IRB, in this study, the initialization space is gradually degraded, starting from the entire

search space, to ζ percent of the search space. The method, hereafter referred to as ζ-RS,

explicitly downsizes the initialization region to a region where the bottom left sides are all

downsized to ζ ∈ [ζL,ζU] percent of the original length. A series of experiments is executed

when ζ changes from ζL to ζU with a predefined step size of ζs. Due to the stochastic

nature of most of optimization processes, each of the experiments is repeated r f times. The

observations have a form of
(

ζ, f
ζ
r

)

∈ IR2 where f
ζ
r is the best fitness an algorithm can

find within a predefined budget on run r ∈ [1,r f], when the initial population is positioned

randomly in a corner box of length ζ percent of the entire search space. An estimation of

best-of-run f̂ ζ as function of ζ can be calculated directly from the observed results.

f̂ ζ = IRB
ζL−ζU

ζs
.ζ+ c2 (6.5)

where IRB
ζL−ζU

ζs
is the slope of the regression line fitted to

(

ζ, f
ζ
r

)

∈ IR2.

In special cases where ζs is equal to ||ζU − ζL|| the metric is referred to as IRBζL,ζU .

To measure the initialization region bias, the IRB
ζL−ζU

ζs
has a greater generalization ability

compared to IRBζL,ζU .

While search algorithms may perform better when they are initialized in the whole

search space and benefit from knowing the search space, one with lower IRB is preferable

over one with higher IRB.

6.4 Three population-based metaheuristics 113

6.4 Three population-based metaheuristics

The primary goal of this study is to asses CSB and IRB of a set of widely used and well-

established metaheuristics. We do not aim at giving an exhaustive experimental comparison

on a wide range of alternative search algorithms, rather we focus on a set of well benchmark

instances. This section respectively formulates the particle swarm algorithm as proposed

in [6] and gravitational search algorithm [46] in addition to presenting a modification of

GSA.

6.4.1 A brief tour of the particle swarm optimization

Swarm intelligence, an emerging collective behavior of interacting agents with examples

of ant colony [18] and bee colony [25], is a popular source of inspiration for the design of

optimization algorithms. Particle swarm optimization (PSO) [27] is a successful instance of

a nature-inspired algorithm for solving global optimization problems. A number of advan-

tages have been attributed to PSO, making it a choice candidate as a benchmark algorithm.

The standard PSO algorithm is suited to handle nonlinear nonconvex optimization prob-

lems with fast convergence characteristics. In this study, PSO is a reasonable choice for

comparison as it does not have bias towards the center of the search space [26].

In classical PSO, every particle is a solution moving in a D-dimensional search space. A

collection of particles is known as swarm. Each particle i has a position, xi ∈ IRD, a velocity,

vi ∈ IRD and the best position found so far, pi ∈ IRD.

PSO uses two independent random variables, r1,r2 ∼ U(0,1), scaled by constants C1

and C2. The constants C1 and C2 are known as learning rates and they influence the maxi-

mum step size a particle can take in a single iteration, representing the confidence of a parti-

cle on its best performance and that of the global best respectively. The movement equations

of every particle i ∈ 1,2, . . . ,S, specified separately for every dimension d ∈ 1,2, . . . ,D, are

given by expressions (6.6) and (6.7).

vd
i = wvd

i +C1rd
1

(

pd
i − xd

i

)

+C2rd
2

(

gd
i − xd

i

)

, (6.6)

xi = xi +vi, (6.7)

where w is a predefined constant representing the confidence of particle on its own move-

ments and pd
i and gd

i are personal best and global best positions respectively. S is the number

of particles in the swarm.

To ensure convergence by avoiding explosion, Clerc et al. [6] introduces the constriction

factor and modifies the velocity update equation as follows:

vd
i = χ

(

vd
i +C1rd

1

(

pd
i − xd

i

)

+C2rd
2

(

gd
i − xd

i

))

, (6.8)

where χ = 2

|2−ϕ−
√

ϕ2−4ϕ|
and ϕ =C1 +C2, ϕ > 4.

6.4.2 A Brief Tour of the GS Algorithm

Gravitational search algorithm (GSA) [46] is a relatively new technique that has been em-

pirically shown to perform well on many optimization problems [4, 16, 19, 23, 31, 32, 41,

114 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

44, 47, 54]. GSA was inspired by the Newton’s law of universal gravitation. In its original

version, GSA scatters particles in a feasible region of the search space, where they interact

with each other under Newton’s gravitational force and move in the search area seeking an

optimal design variable. GSA shares features with several competing schemes, for instance

by sharing information between solutions. In contrast to EAs where solutions die at the end

of each generation, in PSO and GSA, solutions survive throughout the optimization process,

providing a substantial source of information for the population when searching the global

optimum.

In GSA, like in many other population based optimization techniques, to guide the pop-

ulation in the search space E, some measure of discrimination is needed, referred here as

a fitness of each candidate solution xi. Each candidate solution is a particle with a mass

Mi. A good solution is analogous to a particle with a high mass, while a poor solution rep-

resents a particle with a low mass. A particle with a high mass resists change more than

one with a low mass and tends to have higher impact on other particles, thereby sharing its

features with low quality solutions. The attractive gravitational force governs the movement

of the particles in the search space. The search begins by an attractive force with a strength

and direction as a function of the mass of particle itself, the mass of other particles and its

relative distance to the other particles. The force is applied to static particles of one under

which their position in the next time step changes and they gain velocity. The quantity of the

resulting force is determined by Newton’s gravitational law. A solution with a higher mass

exerts a stronger force compared to a smaller mass. The kinetic energy stored in particles

is a form of memory, allowing them to steer their movement under the influence of their

memory and external forces. The sum of the force field Fi and the particle’s kinetic energy,

induced from its velocity and mass, is the total force acting on them, which together with its

current position xi(t), determines the particles next position xi(t +1) in the search space.

In original GSA [46], the mass of particles, considering its quality, is assigned as fol-

lows:

Mi =
mi

∑S
j=1 m j

, i = 1,2, . . . ,S (6.9)

where

mi =
f (xi)−max j∈{1,...,S} f (x j)

min j∈{1,...,S} f (x j)−max j∈{1,...,S} f (x j)
, (6.10)

and S is the number of particles. The resulting gravitational force acting on particle i in

direction d is determined using Equation (6.11).

Fd
i = ∑

j∈Kbest

r jF
d
i j , (6.11)

where Kbest is a set of particles with the highest mass, r j ∼ U(0,1) and Fd
i j is the gravita-

tional force exerted by particle j on particle i. To provide a better exploration in the early

iterations |Kbest| is set at S in the beginning; however the exploration must be decreased

gradually. Therefore choosing a decremented function for |Kbest| increases the exploitation

of the algorithm when the number of iterations increases.

The force exerted by particle j acting on particle i is defined as:

6.4 Three population-based metaheuristics 115

Fd
i j = G

Mi ×M j

Ri j + ε

(

xd
j − xd

i

)

(6.12)

where Ri j is Euclidian distance between particles i and j. and G, the gravitational constant

initialized at G0 is determined using Equation (6.13) as:

G = G0e−α t
MaxIteration (6.13)

where α is algorithmic tuning parameter and MaxIteration is the maximum iteration.

The equations of motion of every particle are described using (6.14) and (6.15) as:

vi(t +1) = R×vi(t)+
Fi

Mi

.∆t, (6.14)

xi(t +1) = xi(t)+vi(t +1).∆t, (6.15)

where ∆t = 1, R ∼ U(0,1) is an array of size D corresponding to each element in vector vi.

6.4.3 mdGSA, a mass-dispersed GSA

In GSA, an increase in the number of particles changes the mass assigned to them as a result

of an increase in the denominator of the Equation (6.9). This increase in the denominator

smooths out the difference between the mass of particles, making them in absolute terms,

more equal in exerting an attractive force and equally resistant to change in their position

as a result of the applied gravitational force. The swarm can be seen as one particle with a

uniform mass distribution. Under the Newtonian gravitational force, this brings the particles

closer to the center of the swarm, resulting in an increase in the density of swarm. As a

result, they move more quickly towards the center of the search space [11]. This may explain

the center-seeking behavior of standard GSA. It is against this backdrop that a different GSA

called mass-dispersed gravitational search algorithm (mdGSA) is devised and tested here.

A more intense discrimination of solutions can be achieved by using the concept intro-

duced in the Simulated Big Bounce (SBB) algorithm [14]. SBB is a global search algorithm

that is inspired by the Big Bounce theory (a cosmological oscillatory model of the Universe),

that, next to exploitation, applies robust exploration in order to escape local minima. In this

approach, based on their fitness, the particles are assigned a mass in the range of [LM,UM].
g, the function that maps the fitness to the mass g : IR → IR, f (xi) 7→ g(f (xi)) , ∀xi ∈ E can

be any monotonically nondecreasing (and possibly time varying) function in principle with

real values defined on a the set of fitness of particle xi whose value is non-negative for f (xi).
We take g as a linear time-invariant strictly increasing function as follows [14]:

Mi = g(f (xi)) =

LM +(UM −LM)

f (xi)− max
j∈{1,...,S}

f (x j)

min
j∈{1,...,S}

f (x j)− max
j∈{1,...,S}

f (x j)
.

(6.16)

mdGSA’s basic steps in pseudo-code are shown in Algorithm 6.1.

116 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

Algorithm 6.1 Pseudo code of mass-dispersed gravitational search algorithm (mdGSA)

Input: Search space E, fitness function f , S, G0, α

1: Initialize particle’s Location, x = (x1, . . . ,xS)
T

2: while t < MaxIteration do

3: Fitness calculation

4: Update Mi, ∀i = 1, . . . ,S ◃ According to (6.16)

5: Update G ◃ According to (6.13)

6: Update attractive force Fd
i , ∀i = 1, . . . ,S

7: Update vi, ∀i = 1, . . . ,S ◃ According to (6.14)

8: Update xi, ∀i = 1, . . . ,S ◃ According to (6.15)

9: t ++ ◃ t is the number of iterations

10: end while

Output: x∗ and f (x∗)

6.5 Experimental results

When comparing the effectiveness of different optimization heuristics, a standard perfor-

mance measure is the best fitness a certain algorithm can reach within a predefined num-

ber of function evaluations. This is based on the assumption that the dominating factor in

measuring computational effort is fitness evaluation, which is usually valid for complex op-

timization problems [13, 15, 51]. In the experiments, this, is modeled as if the maximum

computational resource budget available to carry out a task were limited, which is equiv-

alent to a situation where the maximum time budget for which the best solution has to be

delivered is limited.

Although the studied optimization algorithms can be simply extended and adapted for

real-world optimization problem, such adaptation may require more elaborate mechanisms.

One example of this is constraint-handling.2 It is well-known that in real-world optimiza-

tion problems there are normally constraints of different types (e.g., related to the geometry

of structural elements to completion times, etc.) that must be satisfied for a solution to be

acceptable. Traditionally, penalty functions have been used to handle constraints [7]. How-

ever, because of the several problems associated to penalty functions (e.g., the definition

of appropriate penalty values is normally a difficult task that has a serious impact on the

performance of the optimizer), some authors have proposed alternative constraint-handling

approaches that require less critical parameters and perform well across a variety of prob-

lems (see for example [7, 34, 50]).

In the experiments described in this section, the common parameters used in each algo-

rithm, such as population size and total number of fitness evaluation, where chosen to be the

same. Unless indicated otherwise, the population size is set at 50 and the maximum number

of fitness evaluation, MaxIteration, is set at 100,000. For Gene regulatory network (GRN)

model identification problem (Section 6.5.2), the maximum number of fitness evaluation is

set at 200,000.

2Although constraint-handling techniques are very important in real-world optimization problems, their dis-

cussion is beyond the scope of this article, due to space limitations. Interested readers are referred to other refer-

ences for more information on this topic (see for example [34, 49]).

6.5 Experimental results 117

PSO settings

The PSO parameters across the experiments have been ϕ = 4.1, ϕ1 = ϕ2 and χ = 0.729,

which is equivalent to setting C1 =C2 = 1.496 and w = 0.729 [6].

GSA settings

The GSA parameters are as follows: G0 is set at 100, α is set at 20, Kbest is set at number

of particles, S, and is linearly decreased to 1 in the final iteration, (MaxIteration) [46].

mdGSA settings

The common setting are GSA settings. The upper and lower bound of mass are set at 1 and

0.01, respectively.

Because the optimization techniques under study are stochastic in nature, for a given

function of a given dimension 30 independent runs where executed for all ξ and ζ values.

Throughout the experiments discussed in this study, the population size and maximum fit-

ness evaluation remain fixed, although it is well known that these control-parameters affect

the performance of the algorithms. The reason not to change the parameters was primarily

the motivation of our study in exposing the center-seeking behavior and IRB of GSA, rather

than emphasizing its performance under different control-parameter settings. The second

reason relates to the assumption that end-users do not know much about the algorithmic

parameters for their optimization problem.

6.5.1 Experiment 1: Standard optimization problems

From the test beds studied in [46, 61], those with varying dimensions are used in this study

to capture the CS behavior of GSA [46], in addition to those studied in [33]. The test beds

along with their characteristics are listed in Table 6.123.

Because the primary objective of this study is to specify the center-seeking behavior

of GSA, the Schwefel function is excluded, since its optimal solution is not close to the

center of the search space. In Table 6.12, D is the dimension of function. The optimal

solution f (x∗) for all the adopted test functions is located at [0, . . . ,0], with the exception

of Dixon-Price, that has its optimal solution located at 2
− 2d−2

2d for d = 1,2, . . . ,D as well as

Levy and Rosenbrock with optimal solution at [1, . . . ,1]. Of the 14 adopted test studies,

half are unimodal, while the others are multimodal. The set contains five separable and nine

non-separable functions. A separable function can be decomposed into D one-dimensional

functions.

The performance of the algorithms is evaluated from both accuracy and robustness per-

spectives. Accuracy is the degree of precision of an optimization algorithm in locating an

optimal solution. An algorithm with a higher accuracy tends to come closer to the op-

timal solution. Accuracy is studied in two different settings for optimization problems,

3Note that, in [46], the Rosenbrock function (also known as Banana problem) is treated as a unimodal test

function when D is set at 30, while it is indeed multimodal when the problem dimensions is more than three [17,

53].

118 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

ξ-Accuracy and ζ-Accuracy. ξ-Accuracy refers to the performance of the optimization al-

gorithms (OAs) under study when the center of the search space changes, while ζ-Accuracy

refers to the performance of OAs when the initialization region changes. Robustness is de-

fined here as the degree of bias of an optimization heuristics on the center of the search

space or the initialization region. A robust optimization algorithm has no CS nor IR bias.

In our experiments, the metrics are measures in a log-linear scale, because the best-of-

run found by each algorithm, in many cases, changes several orders of magnitude as a result

of ξ-CO and/or ζ-RS.

ξ-CO test results

Figures 6.2 to 6.3 are the test results of the ξ-CO on a selection of the studied standard

benchmark problems when D is set at 50 and 100, respectively. The x-axis is ξ and the

y-axis is the performance of each OA, averaged over r f = 30 independent runs. Throughout

this study ξL and ξU are set at 5 and 45 respectively and the step size ξs is set at 5. These

choices for ξL and ξU are based on the assumption that an optimal solution of a real-world

problem is usually neither at the center of the search space, nor at the boundaries, suggesting

ξ = 0 and ξ = 50 are not interesting cases to study.

Figures 6.2 to 6.3 show that, as a result of downsizing the search space, the performance

of the PSO algorithm is nearly a horizontal line in most of the experiments. The performance

of the GSA deteriorates quickly by moving the optimal solution from the center of the search

space. mdGSA falls somewhere in between.

Tables 6.1 and 6.3 summarize the CSB
ξL−ξU

ξs
, when D is set at 50 and 100, respectively.

In each table, asterisk symbols are used to denote no statistically significant association

between the observed change in estimation of the best-of-run as a result of change in ξ

using F-statistics. Statistical testing is performed to determine whether or not CSB
ξL−ξU

ξs

measures are zero, in addition to testing if CSB
ξL−ξU

ξs
(mdGSA) is statistically smaller than

that of CSB
ξL−ξU

ξs
(GSA).

In the case of Step function, F14, the optimal solution, 0, is attainable under a relatively

wide range of design values. This, in log-linear scale, leaves us with no way to fit a line to

the observed performance. Hence, the Step function is excluded from Tables 6.1 and 6.3.

As a replacement for it, the convergence curse of some selected ξ values are visualized in

Figure 6.4.

For each of the nine ξ values on each of the 14 problems, the optimization methods are

statistically compared using pairwise contrast. The number of times an OA has a statistically

significant superiority (SSS) compared to other optimization algorithms on a total of 9∗14

problems is shown in Tables 6.2 and 6.4. We also report the number of times an optimization

approach achieves the best result, best mean and best median when it is statistically superior

to others. As an example, the number of times an algorithm performs best is the number

of times a) it is statistically superior to others and b) it has the best fitness over 30 runs

compared to other competing algorithms. In addition, the number of times the worst result

is achieved is reported.

Results on 50D problems First, we evaluate the robustness of each algorithm when the

dimension of the optimization problems is set at 50. For each optimization algorithm,

6.5 Experimental results 119

CSB5−45
5 are reported in Table 6.1. The slope of fitted line describing center-seeking bias

of PSO (Mdn = -0.3019) was not significantly different from zero (Wilcoxon signed-rank,

W=33, p=0.2071) while for GSA (Mdn = 5.8795, Wilcoxon signed-rank, W=1, p=2.44E-4)

and mdGSA (Mdn = 0.9621, Wilcoxon signed-rank, W=8, p=0.0030) the fitted line had

a slope significantly different from zero. Interestingly, the observed CSB5−45
5 (GSA) was

significantly higher than CSB5−45
5 (mdGSA) (Wilcoxon rank sum test, W=224, p = 0.069).

Out of total of 9*14 experiments each repeated 30 times, when D = 50, mdGSA and

GSA are competing closely when looking at the number of times they were statistically su-

perior to the others (Table 6.2). As a result, a statistical test of significance was performed on

median of fitness they both can achieve under different settings of studied optimization prob-

lems. For that, logarithmic transformation of the median of fitness values was performed in

the first place (because the Wilcoxon test assumes that the distribution of the data, although

not normal, is symmetric). Wilcoxon paired sample test (W=3399, p=0.8865) confirms that

there is no significant difference between the performance of GSA and mdGSA. Note that,

due to logarithmic transformation of the medians, the Step function is excluded from the

test, which means that the test is performed on 13 test problems, each with 9 different ξ

values.

So, while mdGSA and GSA come in joint first place, PSO, with only two cases of SSS,

cames second (Table 6.2). While PSO is the most robust of the algorithms under study, it

did not perform better than the others in terms of its ξ-accuracy.

The picture changes when looking at other measures, for instance the worst solutions

over the 30 runs. While GSA and mdGSA come close in terms of their statistical superiority,

mdGSA shows the worst fitness in only 13 cases, compared to 47 cases for GSA, which

suggests that GSA is more susceptible to trapping around a local optimum and missing the

global optimum.

Table 6.1: CSB5−45
5 of the studied algorithms when D is set at 50.

Simulation results

CSB5−45
5 (GSA) CSB5−45

5 (mdGSA) CSB5−45
5 (PSO)

Ackley 9.219 1.25 -0.49*

Dixon 1.217 0.01371 0.4631

Griewank 5.879 2.195 0.8024*

Levy 29 12.42 4.599

Penalty1 31.3 5.48 -1.596*

Penalty2 49.75 0.856* -2.843

Quartic -0.05537* 0.01948* -1.119

Rastrigin 2.02 1.503 0.2341

Rosenbrock 0.3789 0.9621 -0.04733*

Schwefel222 4.5 1.074 -0.3019

Schwefel12 11.01 -0.5769 0.1159*

Schwefel121 11.79 -0.02214* -0.3442

Sphere 4.285 0.02609* -0.6474

120 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

(a)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

(b)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

(c)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(d)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−20

10
−15

10
−10

10
−5

10
0

(e)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(f)

GSA

mdGSA

PSO

Figure 6.2: Test results of the ξ-CO for GSA (blue), mdGSA (red) and PSO (black) when

D = 50. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,

e) Sphere, f) Step.

6.5 Experimental results 121

Table 6.2: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)

when ξ changes from 5 to 45 and when D is set at 50.

Simulation results

GSA mdGSA PSO

SSS a 57 51 2

Best b 56 33 1

Worst c 48 12 63

Best mean d 43 49 2

Best median e 57 51 2

a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

Results on 100D problems Table 6.3 summarizes the results of the studied algorithms

when D is set at 100 considering CSB5−45
5 metric. In this case again the null hypothesis

of equality of median of CSB5−45
5 (PSO) to zero is accepted (Mdn = -0.1096, Wilcoxon

signed-rank, W=32, p=0.1878) while for both GSA (Mdn = 12.3409, Wilcoxon signed-rank,

W=0, p=1.22E-4) and mdGSA (Mdn = 3.4746, Wilcoxon signed-rank, W=0, p=1.22E-4)

this hypothesis is rejected. CSB5−45
5 (mdGSA) was statistically lower than CSB5−45

5 (GSA)
(Wilcoxon rank sum test, W=215, p = 0.0227), suggesting that mdGSA indeed dilutes the

strong center-seeking bias of GSA. This can also be confirmed by looking at the median of

the two optimization heuristics.

Note that, as a result of an increase in the dimension of the search space, GSA loses

its ξ-accuracy in favor of mdGSA (Table 6.4). GSA, out of a total of 9*14 experiments,

is statistically superior to the others in 20 cases, mdGSA in 67 cases and PSO in only 11

cases. Wilcoxon paired-sample test (W=1341, p=9.4594E-9) also confirms the superiority

of mdGSA when looking at the logarithmic transformation of the median of their perfor-

mance on the set of optimization problems.

While GSA shows the worst results in 71 cases, and PSO in 55 cases, this was never

the case for mdGSA, which, again suggests that GSA, when compared to mdGSA, is more

susceptible to trapping around a local optimum.

ξ-CO test results on Step function The results of the Step function are not presented in

Tables 6.1 and 6.3. Instead, for ξ = {5,25,45}, Figure 6.4 compares the performance of the

algorithms under study. In this figure, GSA5 for instance means the performance of GSA

when ξ is set at 5. The results presented are averaged over 30 independent runs to eliminate

the random effect of arbitrary initialization of initial population.

When D = 50 (Figure 6.4.a) as a result of moving the center of the search space, the

performance of both PSO and mdGSA does not change very much. For GSA, there is a

clear deterioration in performance when the center of the search space is moved. When

ξ = 5 (which basically means that the optimal solution is near to the center of the search

space), GSA locates the optimal solution very quickly and defeats its contenders, while it

122 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

10
3

10
4

(a)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

3

10
4

10
5

10
6

10
7

10
8

10
9

(c)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

(d)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

10
5

(e)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(f)

GSA

mdGSA

PSO

Figure 6.3: Test results of the ξ-CO for GSA (blue), mdGSA (red) and PSO (black) when

D = 100. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,

e) Sphere, f) Step.

6.5 Experimental results 123

Table 6.3: CSB5−45
5 of the studied algorithms when D is set at 100.

Simulation results

CSB5−45
5 (GSA) CSB5−45

5 (mdGSA) CSB5−45
5 (PSO)

Ackley 26.59 15.35 -0.1096*

Dixon 5.409 2.789 -0.02233*

Griewank 4.043 2.863* -0.6713

Levy 10.98 7.655 -0.3052

Penalty1 7.644 5.933 -0.1683

Penalty2 12.43 5.624 -0.5562

Quartic 44.37 5.285 -1.158

Rastrigin 1.943 1.627 0.2927

Rosenbrock 12.34 2.723 0.06779*

Schwefel222 17.93 12.84 -0.1035*

Schwefel12 14.21 3.023 0.897

Schwefel121 1.737 3.475 2.457

Sphere 54.84 2.904 -0.5122

Table 6.4: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)

when ξ changes from 5 to 45 and when D is set at 100.

Simulation results

GSA mdGSA PSO

SSS a 20 67 11

Best b 19 58 5

Worst c 71 0 55

Best mean d 14 63 11

Best median e 20 67 11

a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

fails to locate the optimal solution when it is removed from the center of the search space

(ξ = {25,45}).

With regard to the case where the dimension of the search space is set at 100, the results

of PSO basically remain the same (Figure 6.4.b). While, in the beginning of the search, for

ξ = 5, GSA has the greatest reduction of fitness among its competitors, it has the highest

performance deterioration when the center of the search space is moved, confirming its

strong center-seeking bias. mdGSA, although defeating GSA under equal settings in all

three cases, shows a degrading performance when ξ is set at 45. These observations are

124 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
0

10
2

10
4

10
6

Iteration

F
itn

es
s

(a)

GSA
5

mdGAS
5

PSO
5

GSA
25

mdGAS
25

PSO
25

GSA
45

mdGAS
45

PSO
45

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Iteration

F
itn

es
s

(b)

GSA
5

mdGAS
5

PSO
5

GSA
25

mdGAS
25

PSO
25

GSA
45

mdGAS
45

PSO
45

Figure 6.4: Performance comparison on Step function for ξ = {5,25,45} when a) D = 50,

b) D = 100.

consistent with our previous findings.

ζ-RS test results

Figures 6.5 to 6.6 contain the test results of the ζ-RS on the test problems when D is 50 and

100, respectively. The x-axis is the percentage of shrinking the initialization region and the

y-axis is the performance averaged over 30 independent runs. An algorithm with no IRB

has the opportunity to explore areas outside the initialization region.

Throughout this study, ζs is set at 10 when ζL = 0 and ζU = 90. A line best fitted to

10*30 observations has a slope of IRB
ζL−ζU

ζs
.

Tables 6.5 and 6.7 present an estimation of the degree of change in the quality of best-of-

run of each optimization heuristic as a result of shrinking the initialization region, when the

dimension of problems are set at 50 and 100, respectively. Here, again, in each table asterisk

symbols are used to denote no statistically significant association between the observed

change in the estimation of the best-of-run as a result of change in ζ using F-statistics.

For the same reason as ξ-CO, the Step function is excluded from the Tables 6.5 and 6.7.

Instead, for some selected ζ values, its convergence curse is visualized in Figure 6.7.

To compare ζ-accuracy of the optimization heuristics under study, we look at the number

6.5 Experimental results 125

Table 6.5: IRB0−90
10 , Initialization region bias when ζ changes from 0 to 90 and when D is

set at 50.

Simulation results

IRB0−90
10 (GSA) IRB0−90

10 (mdGSA) IRB0−90
10 (PSO)

Ackley 1.162 -0.005047* 3.556

Dixon 0.001543* -8.645e-015* 0.1817

Griewank 3.462 -0.48* 0.1506*

Levy 1.255* -0.5644* 3.842

Penalty1 13.02 0.6169* 0.2494*

Penalty2 22.8 -0.6841* 0.5677*

Quartic -0.02836* -0.01201* 0.8033

Rastrigin -0.000824* -0.03876 0.1463

Rosenbrock 0.7701 0.01091* 0.2249

Schwefel222 -0.007248* -0.002421* 0.4908

Schwefel12 6.375 0.01072* 0.8677

Schwefel121 5.495 -0.04105 0.3853

Sphere 30.28 0.003999* 0.2297

of times one is statistically superior to the others and the number of times one has the worst

fitness (Tables 6.6 and 6.8). For each optimization heuristic, the number of test problems

equals 10*14 (10 ζ values for each of the 14 problems). We also report the number of times

an optimization method has the best performance, best mean and best median when it is

statistically superior. The number of times each has the worst fitness is reported as well.

Results on 50D problems In 10 of the 13 optimization problems, the performance of the

PSO algorithm degrades as a result of shrinking the initialization space. However compared

to GSA, its IRB0−90
10 is small. The performance of the GSA on eight optimization problem

degrades under ζ-RS test. The mdGSA is more robust to the initialization region and is

nearly a straight line in 11 of the 13 experiments. The slope is significantly different than

zero in only two cases. In both of these cases, the slope is negative, meaning that the

performance of the algorithm increases as a result of shrinking the initialization region. A

possible explanation for this will be suggested later.

For GSA (Wilcoxon signed-rank, W=227.5, p=0.0012) and PSO (Wilcoxon signed-

rank, W=240.5, p=1.60E-4), the IRB0−90
10 values are significantly different than zero, while

in the case of mdGSA (Wilcoxon signed-rank, W=162.5, p=0.1655), the IRB0−90
10 ’s does not

differ significantly from zero, which suggests that both GSA and PSO are not robust with

regard to the initialization region.

In the combination of 14 test problems and 10 initializations regions, GSA and mdGSA

are competing closely when looking at the number of times each of them is significantly

superior to the others (in 75 and 51 cases, respectively). So, similar to ξ-CO, a statistical

test of significance is performed on the median of fitness each of them can obtain on different

settings of studied optimization problems when a logarithmic transformation of the median

126 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

of fitness values is performed. Wilcoxon signed-rank test4 results (W=3981, p=0.5205)

confirm that there is no significant difference between the performance of GSA and mdGSA.

So, mdGSA and GSA come in joint first place, while PSO comes in second place.

In 69 cases, PSO has the worst fitness over 30 runs, while GSA, with 58 cases, comes

in second place and mdGSA, with 11 cases, shows the best performance. This suggests

that mdGSA is less susceptible to the attraction of local optima. Table 6.6 summarizes the

results.

Table 6.6: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)

when ζ changes from 0 to 90 and when D is set at 50.

Simulation results

GSA mdGSA PSO

SSS a 75 51 0

Best b 74 43 0

Worst c 58 11 69

Best mean d 56 50 0

Best median e 75 51 0

a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

Results on 100D problems In Table 6.7, the slope of the line fitted to observed best-of-run

fitness values for each benchmark problem is presented when D is set at 100. IRB0−90
10 (PSO)

has significantly positive associations with ζ in all cases. GSA has a significantly positive

IRB0−90
10 in 11 of the total of 13 cases, while IRB0−90

10 (mdGSA) has no significant positive

associations with ζ. This suggests that GSA (Wilcoxon signed-rank, W=247, p=9.97E-5)

and PSO (Wilcoxon signed-rank, W=260, p=4.15E-6) both have significant initialization

region bias when D is set at 100, while mdGSA (Wilcoxon signed-rank, W=156, p=.29) has

IRB values that are significantly close to zero.

As was the case when the dimension of the test problems is set at 50, mdGSA again

has some negative IRB values. An intuitive explanation for this observation goes as fol-

lows. Due to high mass discrimination of mdGSA, when the initialization region is small

compared to the entire design space, the particle with the highest fitness that is equivalent

to highest mass is better able to direct the entire swarm towards the optimal solution. As a

result the algorithm performs slightly better compared to when the initialization is the entire

search space. It is important to point out that the improvement is not visible in most of the

cases from Figures 6.5 and 6.6 and that this improvements, in all 13 cases, has no significant

correlation with ζ, confirmed by analysis of covariance (F-test). When compared to GSA,

mdGSA has significantly less IRB (Wilcoxon rank sum test, W=246, p = 1.65E-4). So, in

4Note that, again, the Step function is excluded from the test due to logarithmic transformation of the medians,

which means that the test is performed on 13 test problems, each with 10 different ζ values.

6.5 Experimental results 127

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

(a)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

(b)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

(c)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(d)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

(e)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
0

10
2

10
4

(f)

GSA

mdGSA

PSO

Figure 6.5: Test results of the ζ-RS for GSA (blue), mdGSA (red) and PSO (black) when D=
50. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21, e) Sphere,

f) Step.

terms of robustness in change in IR, mdGSA defeats its competitors.

Summarized in Table 6.8, mdGSA presents higher ζ-accuracy compared to its two com-

petitors. With 87 cases of significant superiority out of total of 14*10 cases, mdGSA ranked

in the first place, followed by GSA, with 26 cases, and PSO, with zero cases. Wilcoxon

paired-sample test (W=1735, p=4.5869E-9) also confirms the superiority of mdGSA when

looking at the logarithmic transformation of the median of their performance.

128 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

Table 6.7: IRB0−90
10 , Initialization region bias when ζ changes from 0 to 90 and when D is

set at 100.

Simulation results

IRB0−90
10 (GSA) IRB0−90

10 (mdGSA) IRB0−90
10 (PSO)

Ackley 11.29 0.05864* 1.153

Dixon 0.286 -0.02044* 0.1956

Griewank 2.623 0.4001* 0.2914

Levy 2.865 -0.05098* 0.9592

Penalty1 10.06 0.03984* 0.3084

Penalty2 10.05 0.007134* 0.1713

Quartic -0.04523* -0.002844* 0.9314

Rastrigin 0.00851* -0.02011* 0.2116

Rosenbrock 8.438 -0.0005933* 0.4377

Schwefel222 2.635 -0.2029* 0.6911

Schwefel12 7.004 -0.01445* 1.124

Schwefel121 1.116 -0.09892* 0.3697

Sphere 21.57 0.004679* 0.2886

GSA has the worst fitness in 75 cases, and PSO in 65 cases. mdGSA has the smallest

number of worst fitness compared to that of GSA and PSO, confirming its superiority over

its competitors in terms of ζ-accuracy. This again suggests that mdGSA is less susceptible

to premature convergence to local optimum when compared to PSO and GSA.

Table 6.8: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)

when ζ changes from 0 to 90 and when D is set at 100.

Simulation results

GSA mdGSA PSO

SSS a 26 87 0

Best b 26 73 0

Worst c 75 0 65

Best mean d 24 85 0

Best median e 26 87 0

a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

ζ-RS test results on Step function Again for the Step function, the results are not pre-

sented in Tables 6.5 and 6.7. So the performance of the studied algorithms when ζ =

6.5 Experimental results 129

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

(a)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

(c)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

(d)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

(e)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(f)

GSA

MGSA

PSO

Figure 6.6: Test results of the ζ-RS for GSA (blue), mdGSA (red) and PSO (black) when

D = 100. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,

e) Sphere, f) Step.

{10,50,90} are presented in Figure 6.7.

When D = 50 (Figure 6.7.a) GSA10 has a sharp fitness decrease. The performance

degrades significantly as a result of shrinking the initialization region (GSA50 and GSA90).

For mdGSA, the performance slightly changes as a result of change in IR, but the pattern

was not clear. The performance of PSO was basically the same under different IRs.

GSA10, when the dimension is set at 100 (Figure 6.7.b), has a sharp fitness change

130 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
0

10
2

10
4

10
6

Iteration

F
itn

es
s

(a)

GSA
10

mdGAS
10

PSO
10

GSA
50

mdGAS
50

PSO
50

GSA
90

mdGAS
90

PSO
90

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Iteration

F
itn

es
s

(b)

GSA
10

mdGAS
10

PSO
10

GSA
50

mdGAS
50

PSO
50

GSA
90

mdGAS
90

PSO
90

Figure 6.7: Performance comparison on Step function for ζ = {10,50,100} when a) D =
50, b) D = 100.

and becomes almost stagnant after approximately 300 iterations on average. As a result

of shrinking the search space, there is a clear pattern in deterioration of the performance

GSA. PSO exhibits similar patterns as expected, shrinking the initialization region does not

appear to affect its performance. For mdGSA, on the Step function and when the dimension

of the problem is set at 100, moving the optimum away from the center of the search space

improves the performance slightly. These observations are compatible with our former

findings.

6.5.2 Experiment 2: Gene regulatory network model identification

Gene regulatory network (GRN) model identification can be a good real-world application

to test the center-seeking behavior and convergence speed of the optimization algorithms,

since the optimal solution is, naturally, not at the center of the search space. Moreover

the problem is highly nonlinear and complex [20, 28, 55]. A short introduction to GRN is

provided below.

6.5 Experimental results 131

Gene regulatory Network

The activation and inhibition of genes are governed by factors within a cellular environment

and outside of the cell. This level of activation and inhibition of genes is integrated by

gene regulatory networks (GRNs), forming an organizational level in the cell with complex

dynamics [9].

GRNs in a cell are complex dynamic network of interactions between the products of

genes (mRNAs) and the proteins they produce, some of which in return act as regulators of

the expression of other genes (or even their own gene) in the production of mRNA. While

low cost methods to monitor gene expression through microarrays exist, we still know little

about the complex interactions of these cellular components. Mathematical modeling of

GRNs is becoming popular in the post-genome era [29, 30]. It provides a powerful tool, not

only for a better understanding of such complex systems, but also for developing new hy-

potheses on underlying mechanisms of gene regulation. The availability of high-throughput

technologies provides time course expression data, and a GRN model built by reverse en-

gineering, may explain the data [38]. Since many diseases are the result of polygenic and

pleiotropic effects controlled by multiple genes, genome-wide interaction analysis is prefer-

able to single-locus studies. Readers looking for more information on GRN might refer to

Schlitt [52].

S-system gene network model

Usually, sets of ordinary differential equations (ODEs) are used as mathematical models for

these systems [58]. S-system approaches, on the other hand, use time-independent variables

to model these processes. Assuming the concentration of N proteins, mRNAs, or small

molecules at time t is given by yt
1,y

t
2, . . . ,y

t
i, . . . ,y

t
N , S-systems model the temporal evolution

of the ith component at time t by power-law functions of the form (6.17).

dyt
i

dt
= αi

(

N

∏
j=1

(yt
j)

gi j

)

−βi

(

N

∏
j=1

(yt
j)

hi j

)

. (6.17)

The first term represents all factors that promote the expression of component i at time t,

yt
i , whereas the second term represents all factors that inhibit its expression. In a biochemical

engineering context, the non-negative parameters αi , βi are called rate constants, and real-

valued exponents gi j (G matrix, [G]) and hi j (H matrix, [H]) are referred to as kinetic order

for synthesis and kinetic order for degradation, respectively.

{α,β, [G], [H]} are the parameters that define the S-system. The total number of param-

eters in the S-system is 2N(N + 1). The parameter estimation is used to determine model

parameters so that the dynamic profiles fit the observation.

Population based S-system model parameter identification

S-system based GRN inference was formulated by Tominaga et al. [57] as an optimization

problem to minimize the difference between the model and the system. To guide the popu-

lation in the search space, some measure of discrimination is needed. The most commonly

used quality assessment criterion is the relative mean quadratic discrepancy between the

observed expression pattern yt
i and the model output ŷt

i [39].

132 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

ce
nt

ra
tio

n

Time

Gene 1
Gene 2

Figure 6.8: Target time dynamics of adopted gene network.

f =
N

∑
i=1

T

∑
t=1

(

ŷt
i − yt

i

yt
i

)2

, (6.18)

where T represents the number of time points.

To assess the performance of the methodologies studied here, a gene regulatory network

consist of two genes generated by the parameters provided in Table 6.9 is adopted [57].

In the original implementation, the search space for αi and βi is limited to [0.0, 20] and

for gi j and hi j to [−4.0, 4.0] and y0
1 and y0

2 are set at 0.7 and 0.3, respectively. The gene

expression levels are plotted in Figure 6.8 and each consist of 50 time course of expression

level per gene. To study the effect of initialization region on the converge of the optimization

algorithms the initialization set to cover part of the search space. In this study, αi and βi is

initialized in [10, 20] and both gi j and hi j to [2.0, 4.0].

Table 6.9: S-System Parameters adopted for model validation [57].

Network parameters

i αi βi gi1 gi2 hi1 gi2

1 3 3 0 2.5 -1 0

2 3 3 -2.5 0 0 2

Results

The fitness transitions of studied methodologies are plotted in Figure 6.9. All algorithms

discussed here start with a randomly generated population of solutions, which means they

all start with close fitness values. The Figures are averaged over 30 independent runs.

6.6 Discussions 133

0 500 1000 1500 2000 2500 3000 3500 4000

2

4

6

8

10

12

14

Number of iteration

F
itn

es
s

GSA
mdGSA
PSO

Figure 6.9: Performance comparison of the GSA, mdGSA and PSO on GRN parameter iden-

tification.

All three OAs start with a sharp fitness decrease in the beginning. GSA almost stagnates

after approximately 2,000 iterations. mdGSA shows a much better progression compared

to PSO and GSA.

As shown in Table 6.10, the results of the proposed mdGSA are better than those of GSA

when the standard cut-off for considering a p-value for a statistically significant difference

is set at p < 0.05. While mdGSA is not significantly superior to PSO, it shows a better

performance, with a smaller standard deviation.

Table 6.10: A Wilcoxon Rank Sum test of the fitness of last generation for GRN parameter

identification (30 runs).

Simulation results

NET1 Mean std. p-Value

PSO 2.8420 2.1192 0.3052

GSA 4.3252 1.6087 3.32E-6

mdGSA 2.4323 0.8699 -

6.6 Discussions

The heuristics we studied are compared on the basis of their robustness and accuracy (per-

formance). We divided the evaluation of robustness into the following two assessments:

• When studying center-seeking bias, PSO is found to be the most appropriate opti-

134 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

mization algorithm (OA). It shows no observable CS bias. mdGSA comes second,

followed by GSA. Statistical comparisons confirm that mdGSA holds less bias to-

wards the center of the search space when compared to GSA.

• When studying initialization region bias, the performance of the PSO deteriorates

(statistically) when the IR is tightened. This is consistent with existing literature [42]

and confirms that an efficient swarm initialization improves performance. GSA also

showed significant deterioration in its performance. mdGSA showed no statistical

change in its performance as a result of shrinking the IR.

From the change in performance that comes from a change in the center of the search

space, as well as a change in IR, we can conclude that mdGSA has less CS bias and less

IRB compared to GSA. It is thus more robust.

From an exploration-exploitation perspective, ζ-RS provides us with better understand-

ing of the behavior of the optimization algorithms. Algorithms with high IRB have limited

abilities to explore promising regions outside of the IR. This is associated with the algo-

rithm’s weak exploration. Looking at the CS bias metric, GSA holds a strong search bias

towards the center of the search space. It even does not have sufficient exploration to search

beyond the initialization region, which lack is confirmed by the metric proposed to measure

IRB. This puts into question the robustness of GSA. mdGSA, on the other hand, while it

enjoys less center-seeking bias, has enough exploration which is confirmed by its statisti-

cally zero IRB. This is considered to be caused by the dispersed mass assignment procedure.

Consequently, mdGSA has a high level of robustness.

As had been shown, mdGSA has a number of negative IRBs. This observation is in

line with the statement made in [43]. There we see that the initial population is beneficial

when it guides the population towards the global optimum, and that, whenever possible, the

alleviation of the negative effects of this bias should be sought. Among the optimization

techniques which we studied, mdGSA is the only one that takes advantage of the initializa-

tion region to guide the population.

The evaluation of accuracy is divided into the following two assessments:

• In low-dimensional optimization problems, both GSA and mdGSA outperform PSO.

There is no significant difference between GSA and mdGSA when counting the num-

ber of times one is statistically superior to the others. This is confirmed by a statistical

test. However, when we collect total number of worst solutions, mdGSA performs

better than GSA.

• In high-dimensional optimization problems, mdGSA performs better than both PSO

and GSA when we consider the number of times one is statistically superior to the

others. The same results is achieved when total of worsts solutions are looked at.

Table 6.11 presents a summary of the comparison of the optimization heuristics exam-

ined in this study. It does so in terms of both their robustness and this accuracy. Robustness

is compared by looking at the metrics presented to measure CSB and IRB. Accuracy is

compared by looking at the quality of solutions found for benchmark optimization prob-

lems under two different settings, ξ-accuracy and ζ-accuracy. To summarize, in terms of

robustness when the center of the search space is changed, PSO is the best of those we

studied. In terms of robustness when changes are made in the initialization region, mdGSA

6.7 Conclusions and Future Work 135

Table 6.11: Best of the studied optimization heuristics when looking at their Robustness and

Accuracy.

Robustness ξ-Accuracy ζ-Accuracy

CSB IRB S-test Worst S-test Worst

GSA / GSA /
Low D PSO mdGSA

mdGSA
mdGSA

mdGSA
mdGSA

High D PSO mdGSA mdGSA mdGSA mdGSA mdGSA

places first. When looking at ξ-accuracy and ζ-accuracy, GSA and mdGSA come joint first

for low-dimensional problems, while mdGSA places first for high-dimensional problems.

mdGSA comes in first place when looking at the number of times it has the worst fitness

compared to the other contenders. High numbers of resulting in worst fitness suggests the

susceptibility of PSO and GSA to becoming trapped in local optima.

Note that it is not in our interest to suggest not to use GSA because of its strong search

bias. User should be aware, rather, of the way in which it might affect their needs. It is also

notable that, in this work, the setting are those recommenced in original work. It must be

noted, however, that changing the algorithmic parameter settings and stopping criteria, the

benchmark functions, and even the grading criteria may change the results and conclusions.

In spite of these caveats, we believe these preliminary results are a promising indication of

the success of the proposed mdGSA on a wide range of optimization problems.

6.7 Conclusions and Future Work

Metaheuristics are a family of approximate methods used to find good solutions to compu-

tationally difficult optimization problems. While some optimization heuristics suffer from

various types of search bias, a review of the literature reveals a lack of an appropriate quan-

tification metric. The major contribution of this study is the development of metrics that

measure the center-seeking and initialization region bias of optimization heuristics. We also

propose an alternative for center offset, as we identified its assumption does not always hold.

Using the proposed metrics, the center-seeking (CS) bias and initialization region bias

(IRB) of GSA are exposed. Our interest in this study was not to improve the performance

of GSA, which can be archived by the integration of useful heuristics. Rather, it was about

presenting a solution to dilute its CS behavior and its IRB. Inspired by our recently in-

troduced global optimization process, we established a “mass-dispersed” version of GSA

called mdGSA. PSO served as our benchmark because it shows no bias towards the center

of the search space [26].

To further substantiate the limitations and capabilities of GSA and mdGSA in dealing

with real-world optimization problems, we want to apply them to a wider range of problems,

such as structural design optimization [15], the detection of hidden information in a spread-

spectrum watermarked signal [10], and problems of traffic control [12].

Several optimization heuristics have evolved in the last decade to facilitate solving op-

136 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

timization problems (see for example [21, 37, 48]), some of which suffer from different

types of search bias [59]. The framework presented in this study appears to be a viable ap-

proach when it comes to comparing different optimization heuristics. As part of our future

work, we are interested in using the framework proposed here to contrast different optimiza-

tion heuristics suitable to handling high-dimensional and complex real-world optimization

problems.

References

[1] Angeline, P. (1998). Using selection to improve particle swarm optimization. In Inter-

national Conference on Evolutionary Computation, pages 84–89.

[2] Branke, J. (2001). Evolutionary approaches to dynamic optimization problems-updated

survey. In GECCO Workshop on evolutionary algorithms for dynamic optimization prob-

lems, pages 27–30.

[3] Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimiza-

tion. In Swarm Intelligence Symposium, pages 120–127.

[4] Chatterjee, A., Mahanti, G., and Pathak, N. (2010). Comparative performance of grav-

itational search algorithm and modified particle swarm optimization algorithm for syn-

thesis of thinned scanned concentric ring array antenna. Progress In Electromagnetics

Research B, 25:331–348.

[5] Chiong, R., Weise, T., and Michalewicz, Z. (2011). Variants of evolutionary algorithms

for real-world applications. Springer-Verlag New York Inc.

[6] Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and con-

vergence in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6(1):58–73.

[7] Coello, C. A. C. (2002). Theoretical and numerical constraint handling techniques used

with evolutionary algorithms: A survey of the state of the art. Computer Methods in

Applied Mechanics and Engineering, 191(11-12):1245–1287.

[8] Cohen, J., Cohen, P., West, S., and Aiken, L. (2003). Applied multiple regres-

sion/correlation analysis for the behavioral sciences. Lawrence Erlbaum Associates.

[9] Crombach, A. and Hogeweg, P. (2008). Evolution of evolvability in gene regulatory

networks. PLoS computational biology, 4(7):e1000112.

[10] Davarynejad, M., Ahn, C., Vrancken, J., van den Berg, J., and Coello Coello, C.

(2010). Evolutionary hidden information detection by granulation-based fitness approx-

imation. Applied Soft Computing, 10(3):719–729.

[11] Davarynejad, M., Forghany, Z., and van den Berg, J. (2012a). Mass-dispersed gravi-

tational search algorithm for gene regulatory network model parameter identification. In

Simulated Evolution and Learning (SEAL’12), pages 62–72.

6.7 Conclusions and Future Work 137

[12] Davarynejad, M., Hegyi, A., Vrancken, J., and van den Berg, J. (2011a). Motorway

ramp-metering control with queuing consideration using Q-learning. In 14th Interna-

tional IEEE Conference on Intelligent Transportation Systems (ITSC), pages 1652–1658.

[13] Davarynejad, M., Rezaei, J., Vrancken, J., van den Berg, J., and Coello, C. C. (2011b).

Accelerating convergence towards the optimal pareto front. In IEEE Congress on Evolu-

tionary Computation (CEC’11), pages 2107–2114.

[14] Davarynejad, M. and van den Berg, J. (2012). Simulated big bounce: a continuous

space global optimizer. Technical report, Faculty of technology policy and management,

Delft University of Technology, The Netherlands.

[15] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012b). A Fit-

ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,

R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for

Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[16] David, R., Precup, R., Petriu, E., Rădac, M., and Preitl, S. (2013). Gravitational search

algorithm-based design of fuzzy control systems with a reduced parametric sensitivity.

Information Sciences, 247(20):154–173.

[17] Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary

algorithm for real-parameter optimization. Evolutionary computation, 10(4):371–395.

[18] Dorigo, M. and Caro, G. D. (1999). Ant colony optimization: a new meta-heuristic.

In IEEE Congress on Evolutionary Computation (CEC’99), pages 1470–1477.

[19] Duman, S., Güvenç, U., and Yörükeren, N. (2010). Gravitational search algorithm for

economic dispatch with valve-point effects. International Review of Electrical Engineer-

ing (IREE), 5(6):2890–2895.

[20] Forghany, Z., Davarynejad, M., and Snaar-Jagalska, B. (2012). Gene regulatory net-

work model identification using artificial bee colony and swarm intelligence. In IEEE

Conference on Evolutionary Computation (CEC’12), pages 949–954.

[21] Ghosh, S., Das, S., Kundu, D., Suresh, K., and Abraham, A. (2012). Inter-particle

communication and search-dynamics of lbest particle swarm optimizers: An analysis.

Information Sciences, 182(1):156–168.

[22] Glover, F. and Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[23] Güvenç, U., Sönmez, Y., Duman, S., and Yörükeren, N. (2012). Combined economic

and emission dispatch solution using gravitational search algorithm. Scientia Iranica,

19(6):1754–1762.

[24] Holland, J. (1975). Adaptation in natural and artificial systems. University of Michi-

gan Press, Ann Arbor, MI.

[25] Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for nu-

merical function optimization: artificial bee colony (abc) algorithm. Journal of Global

Optimization, 39(3):459–471.

138 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

[26] Kennedy, J. (2007). Some issues and practices for particle swarms. In IEEE Swarm

Intelligence Symposium (SIS’07), pages 162–169. IEEE.

[27] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-

tional Conference on Neural Networks, volume 4, pages 1942–1948.

[28] Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., and Tomita, M. (2003). Dynamic

modeling of genetic networks using genetic algorithm and s-system. Bioinformatics,

19(5):643–650.

[29] Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa,

N., Yokoyama, S., Kuramitsu, S., and Konagaya, A. (2005). Inference of s-system mod-

els of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics,

21(7):1154.

[30] Lee, W. and Tzou, W. (2009). Computational methods for discovering gene networks

from expression data. Briefings in bioinformatics, 10(4):408–423.

[31] Li, C. and Zhou, J. (2011). Parameters identification of hydraulic turbine governing

system using improved gravitational search algorithm. Energy Conversion and Manage-

ment, 52(1):374–381.

[32] Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., and Baets, B. D. (2010). A

gravitational approach to edge detection based on triangular norms. Pattern Recognition,

43(11):3730–3741.

[33] Mariani, V. and Coelho, L. (2011). A hybrid shuffled complex evolution approach

with pattern search for unconstrained optimization. Mathematics and Computers in Sim-

ulation, 81(9):1901–1909.

[34] Mezura-Montes, E., editor (2009). Constraint-Handling in evolutionary optimization.

Springer, Berlin, Germany.

[35] Mitchell, T. (1997). Machine learning. McGraw Hill.

[36] Monson, C. and Seppi, K. (2005). Exposing origin-seeking bias in pso. In Proceedings

of the 2005 conference on Genetic and evolutionary computation, pages 241–248.

[37] Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., and Suganthan, P. (2012).

A dynamic neighborhood learning based particle swarm optimizer for global numerical

optimization. Information Sciences, 209:16–36.

[38] Navlakha, S. and Bar-Joseph, Z. (2011). Algorithms in nature: the convergence of

systems biology and computational thinking. Molecular Systems Biology, 7(1).

[39] Noman, N. and Iba, H. (2005). Inference of gene regulatory networks using s-system

and differential evolution. In Genetic and Evolutionary Computation Conference, Wash-

ington, DC, pages 439–446.

6.7 Conclusions and Future Work 139

[40] Ono, I., Kita, H., and Kobayashi, S. (1999). A robust real-coded genetic algorithm

using unimodal normal distribution crossover augmented by uniform crossover: Effects

of self-adaptation of crossover probabilities. In Genetic and Evolutionary Computation

(GECCO’99), pages 496–503.

[41] Pal, K., Saha, C., Das, S., and Coello, C. C. (2013). Dynamic constrained optimization

with offspring repair based gravitational search algorithm. In 2013 IEEE Congress on

Evolutionary Computation (CEC’13), pages 2414–2421.

[42] Pant, M., Thangaraj, R., and Abraham, A. (2009). Particle swarm optimization: Per-

formance tuning and empirical analysis. In Abraham, A., Hassanien, A., Siarry, P., and

Engelbrecht, A., editors, Foundations of Computational Intelligence Volume 3, volume

203 of Studies in Computational Intelligence, pages 101–128. Springer Berlin / Heidel-

berg.

[43] Pelikan, M. and Sastry, K. (2009). Initial-population bias in the univariate estimation

of distribution algorithm. In Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pages 429–436.

[44] Precup, R., David, R., Petriu, E., Preitl, S., and Paul, A. (2011). Gravitational search

algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity.

Soft Computing in Industrial Applications, pages 141–150.

[45] Price, K., Storn, R., and Lampinen, J. (2005). Differential evolution: a practical

approach to global optimization. Springer Natural Computing Series.

[46] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). Gsa: a gravitational

search algorithm. Information Sciences, 179(13):2232–2248.

[47] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2011). Filter modeling us-

ing gravitational search algorithm. Engineering Applications of Artificial Intelligence,

24(1):117–122.

[48] Rowhanimanesh, A. and Akbarzadeh-T, M. (2011). Perception-based heuristic gran-

ular search: Exploiting uncertainty for analysis of certain functions. Scientia Iranica,

18(3):617–626.

[49] Runarsson, T. P. (2004). Constrained evolutionary optimization by approximate rank-

ing and surrogate models. In Proceedings of 8th Parallel Problem Solving From Nature

(PPSN VIII), pages 401–410.

[50] Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary

optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

[51] Sastry, K., Goldberg, D., and Pelikan, M. (2001). Dont evaluate, inherit. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, pages 551–558.

[52] Schlitt, T. (2013). Approaches to modeling gene regulatory networks: A gentle intro-

duction. In In Silico Systems Biology, pages 13–35.

140 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

[53] Shang, Y., , and Qiu, Y. (2006). A note on the extended rosenbrock function. Evolu-

tionary Computation, 14(1):119–126.

[54] Shaw, B., Mukherjee, V., and Ghoshal, S. (2012). A novel opposition-based gravita-

tional search algorithm for combined economic and emission dispatch problems of power

systems. International Journal of Electrical Power & Energy Systems, 35(1):21–33.

[55] Sı̂rbu, A., Ruskin, H., and Crane, M. (2010). Comparison of evolutionary algorithms

in gene regulatory network model inference. BMC Bioinformatics, 11(59).

[56] Storn, R. and Price, K. (1995). Differential evolution-a simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical report, International

Computer Science Institute, Berkley.

[57] Tominaga, D., Okamoto, M., Maki, Y., Watanabe, S., and Eguchi, Y. (1999). Nonlinear

numerical optimization technique based on a genetic algorithm for inverse problems:

Towards the inference of genetic networks. In German Conference on Bioinformatics

Computer Science and Biology, pages 127–140.

[58] Tsai, K. and Wang, F. (2005). Evolutionary optimization with data collocation for

reverse engineering of biological networks. Bioinformatics, 21(7):1180.

[59] Whitacre, J. (2011). Recent trends indicate rapid growth of nature-inspired optimiza-

tion in academia and industry. Computing, 93(2):121–133.

[60] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82.

[61] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE

Transactions on Evolutionary Computation, 3(2):82–102.

6.7 Conclusions and Future Work 141

T
a
b
le

6
.1

2
:

T
es

t
p
ro

b
le

m
s

u
se

d
in

th
e

ex
p
er

im
en

ts
.

U
:

U
n
im

o
d
a
l,

M
:

M
u
lt

im
o
d
a
l,

S
:

S
ep

a
ra

b
le

,
N

:
N

o
n
-S

ep
a
ra

b
le

F
u
n
ct

io
n

n
am

e
M

at
h
em

at
ic

al
R

ep
re

se
n
ta

ti
o
n

C
h
ar

ac
te

ri
st

ic
S

ea
rc

h
sp

ac
e

A
ck

le
y

f 1
(x
)
=

−
2
0

ex
p

(

−
0
.2
√

1 D
∑

D i=
1

x
2 i

)

−
ex

p
(

1 D
∑

D i=
1

co
s
(2

π
x i
))
+

2
0
+

e
M

N
[−

3
0
,3

0
]D

D
ix

o
n
-P

ri
ce

f 2
(x
)
=
(x

1
−

1
)2
+

∑
D i=

2
i(

2
x

2 i
−

x i
−

1

)

2
U

N
[−

1
0
,1

0
]D

G
ri

ew
an

k
f 3
(x
)
=

1
4

0
0

0
∑

D i=
1

x
2 i
−

∏
D i=

1
co

s
(

x i √
i)

+
1

M
N

[−
6
0
0
,6

0
0
]D

f 4
(x
)
=

si
n

2
(π

y 1
)
+

∑
D i=

1
(y

i
−

1
)2
[

1
+

1
0

si
n

2
(π

y i
+

1
)]
+
(y

D
−

1
)2

,
L

ev
y

y i
=

1
+

x i
−

1
4

M
N

[−
1
0
,1

0
]D

f 5
(x
)
=

π D
{1

0
si

n
(π

y 1
)
+

∑
D i=

1
(y

i
−

1
)2
[1
+

1
0

si
n

2
(π

y i
+

1
)]
+
(y

D
−

1
)2
}+

P
en

al
iz

ed
1

∑
D i=

1
u
(x

i,
1
0
,1

0
0
,4
),

y i
=

1
+

x i
+

1
4

,
u
(x

i,
a
,k
,m

)
=

    

k
(x

i
−

a
)m

;
x i
>

0

0
;

−
a
<

x i
<

a

k
(−

x i
−

a
)m

;
x i
<

0

M
N

[−
5
0
,5

0
]D

f 6
(x
)
=

.1
{s

in
2
(3

π
x 1
)
+

∑
D i=

1
(x

i
−

1
)2
[1
+

1
0

si
n

2
(3

π
x i
+

1
)]

+
P

en
al

iz
ed

2
(x

D
−

1
)2
[1
+

si
n

2
(2

π
x n
)]
}+

∑
D i=

1
u
(x

i,
5
,1

0
0
,4
)

M
N

[−
5
0
,5

0
]D

Q
u
ar

ti
c

f 7
(x
)
=

∑
D i=

1
ix

4 i
U

S
[−

1
.2

8
,1
.2

8
]D

R
as

tr
ig

in
f 8
(x
)
=

∑
D i=

1

(

x
2 i
−

1
0

co
s
(2

π
x i
)
+

1
0
)

M
S

[−
5
.1

2
,5
.1

2
]D

R
o
se

n
b
ro

ck
f 9
(x
)
=

∑
D
−

1
i=

1
[1

0
0
(

x
2 i
−

x i
+

1

)

2
+
(x

i
−

1
)2
]

M
N

[−
5
0
,5

0
]D

S
ch

w
ef

el
P

2
.2

2
f 1

0
(x
)
=

∑
D i=

1
|x i
|+

∏
D i=

1
|x i
|

U
N

[−
1
0
,1

0
]D

S
ch

w
ef

el
P

1
.2

f 1
1
(x
)
=

∑
D i=

1

(

∑
i j=

1
x

j)

2

U
N

[−
1
0
0
,1

0
0
]D

S
ch

w
ef

el
P

2
.2

1
f 1

2
(x
)
=

m
ax
{|

x i
|,1

≤
i
≤

n
}

U
S

[−
1
0
0
,1

0
0
]D

S
p
h
er

e
f 1

3
(x
)
=

∑
D i=

1
x

2 i
U

S
[−

1
0
0
,1

0
0
]D

S
te

p
f 1

4
(x
)
=

∑
D i=

1
(⌊

x i
+
.5
⌋)

2
U

S
[−

1
0
0
,1

0
0
]D

“Not every end is the goal. The end of a melody is not its goal,

and yet if a melody has not reached its end, it has not reached

its goal. A parable.”

Friedrich Nietzsche

7
Conclusions and future research

This chapter provides a brief summary of the findings and contributions of this thesis, fol-

lowed by a discussion of directions for future research.

Metaheuristics are amongst a set of well-known and widely used techniques for real-

world optimization problems. Depending on the factors responsible for the increased com-

plexity of the problems we are dealing with, there are at least two solutions to improve meta-

heuristics: a) Reduction of computational complexity related to high computation costs of

fitness evaluations and b) More effective search strategies by improved balancing of explo-

ration and exploitation. In this thesis we have taken up this challenge not only by reducing

computational cost using techniques such as fitness approximation, but also by developing

a new metaheuristic as well as proposing metrics for measuring certain search biases that

directly pertinent to the problem of making the best possible selection of solvers.

Fitness Approximation

Population-based metaheuristics are ruled by the competitive nature of the “survival of

the fittest”, a process that is robust against uncertainties in fitness value, as long as a proper

ranking of candidate solutions is preserved. This robustness implies that a proper approxi-

mation of the fitness of candidate solutions may replace the exact fitness calculation. When

exact fitness evaluation is computationally expensive, fitness approximation is a natural ap-

proach, reducing, as it does, the computational cost.

Granulation of information is a satisfactory way of handling information by abstraction

at a level of coarseness suited to providing appropriate and sufficient input for problem solv-

ing. Graduated granulation of information was proposed by Zadeh in 1979, and is a tech-

nique by which a class of objects are partitioned into granules. This is a process whereby

human reasoning can be formed, organized and manipulated so as to handle complexity and

imprecision. In order to exploit evolutionary algorithms’ natural tolerance for imprecision

in fitness values, in Chapter 2 this concept of fuzzy granulation is adopted to reduce the

143

144 7 Conclusions and future research

overall computational cost. It does so by computing exact fitness selectively and only in

the event that it has deficient similitude to a pool of granules whose true fitness has been

registered. The proposed method is adaptive in the sense that the feedback from the current

population is used to determine the granules radius of influence. Moreover, the minimum

similarity a candidate solution needs to share with the granule pool changes in a way de-

signed to encourage fewer exact fitness evaluations in initial stages, and more exact fitness

evaluations in later stages of evolution. In these later stages, competition is fierce amongst

similar and converging solutions, meaning that the level of approximation changes over

time. Moreover, the mechanism that is embedded to control the size of the granule pool,

replaces specific granules with new ones adaptively. That is why the proposed approach is

referred to as adaptive fuzzy fitness granulation (AFFG). Statistical analysis reveals that the

proposed method significantly decreases the number of fitness function evaluations while

finding equally acceptable, or even better, solutions when applied to a set of benchmark

problems and hardware design problems.

Most metaheuristics include some tuning parameters that influence the optimization al-

gorithm. The selection of these algorithm parameters is, to a large extent, empirical. AFFG

is not an exception. When using fitness approximation, it is crucial to have an accurate es-

timation of the fitness function of the individuals in the finishing generations. In the case of

AFFG, this can be accomplished by controlling the radius of influence of the granules. This

radius is the width of the membership function (WMFs). During the early steps of evolu-

tion, and by choosing relatively large WMFs, the algorithm accepts individuals with a lower

degree of similarity. Fitness is therefore more often estimated. As the individuals mature

and reach higher fitness values, the width decreases, implying that, in order for the fitness

of an individual to be approximated, its similarity to the granule pool should increase. This

prompts a higher selectivity and a higher threshold for fitness estimation. In later genera-

tions, the degree of similarity between two individuals must be larger than that in the early

generations, in order for them to be accepted as similar individuals. This procedure ensures

a fast convergence rate, due to rapid computation in the early phase and accurate fitness

estimation in the later stage.

To achieve these desiderata without having to tune the parameters manually, a fuzzy

supervisor with three inputs is employed in Chapter 3. During the AFFG search, the fuzzy

logic controller observes the Number of Design Variables (NDV), the Maximum Range

of Design Variables (MRDV) and the percentage of completed trials. It also specifies the

WMFs. The combined effect of granule enlargement/shrinkage is to realize both rapid com-

putation and accurate fitness estimation. Instead of one controller, and in order to reduce

the large number of rules and the extraction of rules, it is separated in two controllers. This

diminishes the complexity of the system and so reduces the number of rules. The effective-

ness of the proposed controller is investigated with a number of optimization benchmarks:

four different choices are given for the dimensionality of the search space. The effect of

the number of granules on the rate of convergence is also studied. The proposed method

is then applied to the hidden information detection problem to recover a pseudo noise (PN)

sequence with a chip period equal to 63, 127 and 255 bits. In comparison with the standard

application of EAs, experimental analysis confirms that the proposed approach has the abil-

ity to considerably reduce the computational complexity of the detection problem, and to

do so without compromising performance.

Real-world problems frequently have two, or more, (possibly conflicting) objectives that

145

we aim to optimize at the same time. Such problems are called multiobjective problems and

have been studied intensively using metaheuristics (particularly, evolutionary algorithms)

over the last few years. In multiobjective optimization problems there is normally no single

solution that is best for all the criteria. Rather, there exists a set of solutions for which no

objective can be improved without worsening another. This is known as a Pareto optimal

set. When plotted in an objective function space, these solutions are collectively known as

the Pareto front.

Multiobjective evolutionary algorithms (MOEAs) are known to be computationally ex-

pensive, since they normally require a high number of objective function evaluations in

order to produce a reasonably good approximation of the Pareto front of the problem being

solved. Nevertheless, relatively little research has been reported so far on the development

of techniques that reduce the computational cost of MOEAs. Chapter 4 of this thesis con-

tributes to this area by adapting the proposed AFFG for reducing the number of objective

function evaluations required by a MOEA. The proposed approach is compared with respect

to the standard NSGA-II, using the Set Coverage, Hypervolume and Generational Distance

performance measures. The results indicate that the proposed approach is a very promis-

ing alternative for dealing with multiobjective optimization problems that involve expensive

fitness function evaluations.

Looking for efficient algorithms

Genetic algorithms, with their principles rooted in natural selection, are among the first

optimization algorithms inspired by nature that deviate widely from the working principles

of classical optimization algorithms with superior characteristics. According to the “No

Free Lunch” theorem, any elevated performance of an optimization algorithm over one class

of problems is offset by the performance over another class. This suggests that we look for

an optimization algorithm that surpasses the performance of others on a specific class of

problems. And indeed, this is the reasoning that led to the development of a vast number of

optimization algorithms, e.g. particle swarm optimization. By deploying this idea, Chapter

5 endeavors to develop an optimization algorithm inspired by the Big Bounce theorem, and

that is competitive over a class of high dimensional optimization problems.

Metrics

In practice, metaheuristics suffer from different types of search bias, the understanding

of which is of crucial importance when it comes to making the best possible choice for a

given problem. Chapter 6 of this thesis introduced two metrics, one for measuring center-

seeking bias (CSB) and one for initialization region bias (IRB). The proposed metric to

measure CSB is based on the well-known center offset, and the metric to measure IRB is

proposed on the grounds of region scaling. A framework is presented in this study that con-

siders both accuracy and robustness when different optimization heuristics are compared.

The proposed framework is used to evaluate the bias of three metaheuristics.

The first metaheuristic studied is particle swarm optimization (PSO), and is chosen as

a benchmark because it shows no bias towards the center of the search space. The second

metaheuristic studied is the gravitation search algorithm (GSA), mainly because of its unex-

pectedly poor results on the benchmark problems studied in Chapter 5. The most prominent

finding is the considerable CSB and IRB of the gravitational search algorithm (GSA). In-

spired by the mass assignment procedure of SBB presented in Chapter 5, a partial solution

146 7 Conclusions and future research

to the center-seeking and initialization region biases is proposed in Chapter 6. This modified

GSA is referred to as mass-dispersed GSA (mdGSA). The performance of mdGSA, which

promotes the global search capability of GSA, is verified using the same mathematical op-

timization problems as in Chapter 5.

The evaluation of robustness is divided into the following two assessments:

• When studying center-seeking bias, PSO is found to be the most appropriate optimiza-

tion algorithm with no observable CS bias, while mdGSA comes second, followed by

GSA. Statistical comparisons confirm that mdGSA holds less bias towards the center

of the search space compared to GSA.

• When studying initialization region bias, the performance of PSO statistically dete-

riorates when the initialization region is tightened. This is consistent with existing

literature and confirms that an efficient swarm initialization improves performance.

GSA also showed significant deterioration in its performance. mdGSA showed no

statistical change in its performance as a result of shrinking the initialization region.

The evaluation of accuracy is divided into the following two assessments:

• In low-dimensional optimization problems, both GSA and mdGSA outperform PSO.

There is no significant difference between GSA and mdGSA when counting the num-

ber of times one is statistically superior to the others. This is confirmed by statistical

testing. However, when looking at the number of worst solutions, mdGSA performs

better than GSA.

• In high-dimensional optimization problems, mdGSA performs better than either PSO

or GSA when counting the number of times one is statistically superior to the others,

as well as when looking at the number of worst solutions.

The results of the gene regulatory network system parameter identification demonstrates the

capabilities of the mdGSA in solving real-world optimization problems.

7.1 Directions for Future Research

This thesis presents a number of solutions in order to reduce the computational cost of

complex optimization problems, either through fitness approximation or through the devel-

opment of a metaheuristic suitable to a class of problems at hand. Moreover, when studying

the properties of metaheuristics, it turned out that some of them suffer from a notable, spe-

cific search bias. To remedy this unfairness, two generic metrics have been developed to

evaluate the search biases of different algorithms. While the contributions presented in this

study are exciting, what is perhaps even more exciting is the fact that this study has gen-

erated more ideas than could conceivably be handled, even given ample time and worlds.

Some of which follows.

Fitness Approximation

• AFFG is deterministic, meaning that when it is plugged into a deterministic search

algorithm, the combined algorithm will remain deterministic. It is not clear if the

7.1 Directions for Future Research 147

ideal approach for controlling the size of granules is the removal of the granule with

the lowest life index, or the (as yet to be developed) stochastic selection of a granule

to be removed from the granule pool. Another deterministic aspect of AFFG is the

granules’ radius of influence. The effect of introducing stochasticity to the granules’

radius of influence, and its effect on the overall performance of optimization search

algorithms, is an open question.

• Approximate models are, in general, able to preserve the history of optimization.

AFFG preserves the history of a search through the pool of granules, and uses this

history to associate the fitness of granules to a candidate solution. A mean of the

fitness value of granules is another way to assign a fitness to a candidate solution,

when weighted by its degree of similarity to the granules. This may improve the

performance of the search, and deserves to be studied in future work.

Looking for efficient algorithms

• Given the success demonstrated by SBB on high-dimensional optimization problems,

there is a need for it to be evaluated properly on real-world problems.

• When the objective function is noisy (i.e. each solution has different objective val-

ues over time, e.g. in uncertain environments), for many metaheuristics optimization

tends to be difficult. The greedy selection mechanism in some optimization algo-

rithms is, in part, responsible for attracting the population to unproductive locations

of the search space. While many of the existing metaheuristics suffer from the same

problem in various forms, it is of interest to see how the performance of SBB changes

under such conditions.

• In multiobjective optimization problems, there is normally no single solution that is

best for all the criteria. Rather, there exists a set of solutions for which no objec-

tive can be improved without worsening another, known as the Pareto optimal set.

When plotted in objective function space, these solutions are known collectively as

the Pareto front. Multiobjective optimization has been studied intensively using meta-

heuristics (particularly, evolutionary algorithms) over the last few years. Given that

many real-word problems are multiobjective, something that deserves special atten-

tion is the studying of the performance of SBB on real-world problems where two or

more objectives have to be optimized at the same time.

Metrics

• Several optimization heuristics have evolved in the last decade to facilitate solving

optimization problems, some of which suffer from different types of search bias. The

framework presented in Chapter 6 of this study appears to be a viable approach to the

comparison of different optimization heuristics. It is of interest, using the framework

proposed here, to contrast different optimization heuristics suitable to the handling of

both high-dimensional and complex real-world optimization problems.

TRAIL Thesis Series

The following list contains the most recent dissertations in the TRAIL Thesis Series. For a

complete overview of more than 100 titles see the TRAIL website: www.rsTRAIL.nl.

The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on trans-

port, infrastructure and logistics.

Davarynejad, M., Deploying Metaheuristics for Global Optimization, T2014/4, June 2014,

TRAIL Thesis Series, The Netherlands

Li, J., Characteristics of Chinese Driver Behavior, T2014/3, June 2014, TRAIL Thesis

Series, the Netherlands

Mouter, N., Cost-Benefit Analysis in Practice: A study of the way Cost-Benefit Analysis is

perceived by key actors in the Dutch appraisal practice for spatial-infrastructure projects,

T2014/2, June 2014, TRAIL Thesis Series, the Netherlands

Ohazulike, A., Road Pricing mechanism: A game theoretic and multi-level approach, T2014/1,

January 2014, TRAIL Thesis Series, the Netherlands

Cranenburgh, S. van, Vacation Travel Behaviour in a Very Different Future, T2013/12,

November 2013, TRAIL Thesis Series, the Netherlands

Samsura, D.A.A., Games and the City: Applying game-theoretical approaches to land

and property development analysis, T2013/11, November 2013, TRAIL Thesis Series, the

Netherlands

Huijts, N., Sustainable Energy Technology Acceptance: A psychological perspective, T2013/10,

September 2013, TRAIL Thesis Series, the Netherlands

Zhang, Mo, A Freight Transport Model for Integrated Network, Service, and Policy Design,

T2013/9, August 2013, TRAIL Thesis Series, the Netherlands

Wijnen, R., Decision Support for Collaborative Airport Planning, T2013/8, April 2013,

TRAIL Thesis Series, the Netherlands

Wageningen-Kessels, F.L.M. van, Multi-Class Continuum Traffic Flow Models: Analysis

and simulation methods, T2013/7, March 2013, TRAIL Thesis Series, the Netherlands

Taneja, P., The Flexible Port, T2013/6, March 2013, TRAIL Thesis Series, the Netherlands

Yuan, Y., Lagrangian Multi-Class Traffic State Estimation, T2013/5, March 2013, TRAIL

149

150 TRAIL Thesis Series

Thesis Series, the Netherlands

Schreiter, Th., Vehicle-Class Specific Control of Freeway Traffic, T2013/4, March 2013,

TRAIL Thesis Series, the Netherlands

Zaerpour, N., Efficient Management of Compact Storage Systems, T2013/3, February 2013,

TRAIL Thesis Series, the Netherlands

Huibregtse, O.L., Robust Model-Based Optimization of Evacuation Guidance, T2013/2,

February 2013, TRAIL Thesis Series, the Netherlands

Fortuijn, L.G.H., Turborotonde en turboplein: ontwerp, capaciteit en veiligheid, T2013/1,

January 2013, TRAIL Thesis Series, the Netherlands

Gharehgozli, A.H., Developing New Methods for Efficient Container Stacking Operations,

T2012/7, November 2012, TRAIL Thesis Series, the Netherlands

Duin, R. van, Logistics Concept Development in Multi-Actor Environments: Aligning stake-

holders for successful development of public/private logistics systems by increased aware-

ness of multi-actor objectives and perceptions, T2012/6, October 2012, TRAIL Thesis Se-

ries, the Netherlands

Dicke-Ogenia, M., Psychological Aspects of Travel Information Presentation: A psycho-

logical and ergonomic view on travellers’ response to travel information, T2012/5, October

2012, TRAIL Thesis Series, the Netherlands

Wismans, L.J.J., Towards Sustainable Dynamic Traffic Management, T2012/4, September

2012, TRAIL Thesis Series, the Netherlands

Hoogendoorn, R.G., Swiftly before the World Collapses: Empirics and Modeling of Lon-

gitudinal Driving Behavior under Adverse Conditions, T2012/3, July 2012, TRAIL Thesis

Series, the Netherlands

Carmona Benitez, R., The Design of a Large Scale Airline Network, T2012/2, June 2012,

TRAIL Thesis Series, the Netherlands

Schaap, T.W., Driving Behaviour in Unexpected Situations: A study into the effects of

drivers’ compensation behaviour to safety-critical situations and the effects of mental work-

load, event urgency and task prioritization, T2012/1, February 2012, TRAIL Thesis Series,

the Netherlands

Muizelaar, T.J., Non-recurrent Traffic Situations and Traffic Information: Determining pref-

erences and effects on route choice, T2011/16, December 2011, TRAIL Thesis Series, the

Netherlands

Cantarelli, C.C., Cost Overruns in Large-Scale Transportation Infrastructure Projects: A

theoretical and empirical exploration for the Netherlands and Worldwide, T2011/15, Novem-

ber 2011, TRAIL Thesis Series, the Netherlands

Vlies, A.V. van der, Rail Transport Risks and Urban Planning: Solving deadlock situa-

tions between urban planning and rail transport of hazardous materials in the Netherlands,

T2011/14, October 2011, TRAIL Thesis Series, the Netherlands

Summary

Deploying Metaheuristics

for Global Optimization

Global optimization is an active research topic in many areas including engineering, busi-

ness, social sciences and mathematics. With the advent of new optimization algorithms, the

set of solvable optimization problems grows steadily and the area of applications widens.

Optimization problems encountered in practice appear in various types and with various

mathematical properties. According to the No-Free-Lunch (NFL) theorem it is impossi-

ble to design a general-purpose universal optimization strategy. This implies that for opti-

mization algorithms to solve a problem efficiently, they have to be tailored to the problem-

specific characteristics. However since there are too many factors to be considered, it is

often hard to accomplish this task by an analytical method. Therefore, in practice a trial-

and-error method is used instead. In this thesis we have taken up this challenge by trying

out a number of metaheuristics.

Evolutionary algorithms (EAs) have been very popular optimization methods for a wide

variety of applications. However, in spite of their advantages, their computational cost is

still a prohibitive factor in certain real-world applications involving computationally ex-

pensive fitness function evaluations. In Chapter 2, we adopt the observation that nature’s

survival of the fittest is not about exact measures of fitness; rather it is about correct ranking

of competing peers. Thus, by exploiting this natural tolerance for imprecision, we propose

a fuzzy granules-based approach for reducing the number of necessary function calls. The

approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a

balance between the accuracy and the utility of the computations. The adaptation algorithm

adjusts the radii of influence of granules according to the perceived performance and level

of convergence attained. Experimental results show that the proposed approach accelerates

the convergence towards optimal solutions, when compared to the performance of other

more popular approaches. This suggests its applicability to other complex real-world prob-

lems. The proposed solution does not have the drawbacks of existing solutions for fitness

approximations, such as time consuming online training.

The solution proposed in Chapter 2 has a number of tuning parameters that are problem

dependent. In practice, a number of trials is needed to adjust these parameters. In Chapter 3

we propose a fuzzy supervisor as an auto-tuning strategy, in order to avoid the tuning of pa-

rameters. Its effectiveness is investigated with three traditional optimization benchmarks of

four different choices for the dimensionality of the search space. The effect of the number

of granules on the rate of convergence is also studied. The proposed method is then applied

to the hidden information detection problem to recover a pseudo noise sequence with a chip

151

152 Summary

period equal to 63, 127 and 255 bits. In comparison with the standard application of EA,

experimental analysis confirms that the proposed approach has an ability to considerably

reduce the computational complexity of the detection problem without compromising per-

formance. Furthermore, the auto-tuning of the fuzzy supervisor removes the need for exact

parameter determination.

In Chapter 2 we have introduced a solution to accelerate the convergence towards the

optimal solution in a single objective function setting. In real-world problems, however, the

number of objectives are often two or more. In Chapter 4 we extend the solution presented

in Chapter 2 for the case where the problem at hand is multi-objective. Our proposed ap-

proach is compared to the standard NSGA-II, using the Set Coverage, Hypervolume and

Generational Distance performance measures. Our results indicate that our proposed ap-

proach is a promising alternative for dealing with multi-objective optimization problems

involving expensive fitness function evaluations.

Some evolutionary computing techniques have advantages over others in terms of ease

of implementation, preservation of diversity of the population, efficiency, etc. For advance-

ment of their performance they may be simplified, hybridized etc. There has also been a

steady increase in the number of global optimization algorithms, each characterized by its

unique population dynamics. Different population dynamics characterizes the way two con-

flicting goals are balanced, exploration (diversification) and exploitation (intensification).

These algorithms were constructed to address the need for faster optimization algorithms.

Although existing metaheuristics are suitable for complex optimization problems, their con-

vergence deteriorates when the complexity increases. Metaheuristics apply a search strat-

egy that balances exploration and exploitation in an algorithm-specific way. It is observed

that metaheuristic algorithms in practice often find local minima, sometimes of low quality,

meaning that the chosen balance is inadequate to the problem at stake. For example, due

to an algorithm’s search bias, too great an emphasis may be placed on the exploitation of

solutions found, while little attention is paid to the further exploration of the search space

as a whole. Based on these observations, and inspired by the Big Bounce theory (a cos-

mological oscillatory model of the Universe), in Chapter 5 we developed a Simulated Big

Bounce (SBB) algorithm that, next to exploitation, applies robust exploration in order to

escape from local minima. This paper presents the design of this new algorithm and shows

the results of a series of comparative experiments in which the performance of SBB on a

set of high-dimensional mathematical benchmarks is compared to that of five other popular

metaheuristics. The results obtained indicate that the proposed algorithm (i) is competi-

tive with (and in most cases surpasses) other population-based optimization algorithms, and

(ii) substantially decreases the number of fitness function evaluations needed to find equally

good solutions. Although SBB has features in common with existing optimization methods,

such as particle swarm optimization (PSO), it possesses additional unique features. These

owe to the diverse kinetic energy of particles, and enable the algorithm to escape from local

minima. Furthermore, the experimental outcomes provide evidence that the characteristic

of robust exploration, which marks SBB, underlies the superior performance observed.

When comparing various optimization strategies, we have observed that in practice,

metaheuristics suffer from various types of search bias, the understanding of which is di-

rectly pertinent to the problem of making the best possible selection of solvers. In Chapter 6,

two metrics are introduced: one for measuring center-seeking bias (CSB) and one for ini-

tialization region bias (IRB). The former is based on ξ-center offset, an alternative to center

Summary 153

offset, which is a common but inadequate approach to analyzing the center-seeking behav-

ior of algorithms, as is shown. IRB is proposed on the grounds of region scaling. The

introduced metrics are used to evaluate the bias of three algorithms while running on a test

bed of optimization problems having their optimal solution at, or near, the center of the

search space. The most prominent finding of this paper is considerable CSB and IRB in the

gravitational search algorithm (GSA). In addition, a partial solution to the center-seeking

and initialization region bias of GSA is proposed by introducing a mass-dispersed version

of GSA: mdGSA. This promotes the global search capability of GSA. Its performance is

verified using the same test bed, next to a gene regulatory network parameter identifica-

tion problem. The results of these experiments demonstrate the capabilities of mdGSA in

solving real-world optimization problems.

We finally present the main finding of this thesis in Chapter 7. We close by suggestions

for future research.

Samenvatting

Deploying Metaheuristics

for Global Optimization

Globale optimalisatie is een actief onderzoeksgebied in vele disciplines, waaronder techni-

sche, bedrijfskundige en sociale wetenschappen en wiskunde. Met de komst van nieuwe

optimalisatie-algoritmen groeit de verzameling van oplosbare optimalisatieproblemen ge-

staag en wordt het toepassingsgebied breder. Optimalisatieproblemen uit de praktijk komen

voor in diverse typen en met diverse wiskundige eigenschappen. Volgens de Geen-Gratis-

Lunch stelling is het onmogelijk om een algemeen bruikbare, universele optimalisatiestra-

tegie te ontwerpen. Dit impliceert dat een optimalisatie-algoritme een probleem alleen effi-

cint kan oplossen als het afgestemd wordt op de specifieke eigenschappen van dat probleem.

Door het grote aantal factoren waarmee rekening gehouden moet worden, is het vaak moei-

lijk om dit afstemmen met een analytische methode uit te voeren. Daarom wordt in de

praktijk een trial-and-error methode gebruikt. In dit proefschrift hebben we deze uitdaging

opgepakt door een aantal metaheuristieken te onderzoeken.

Hoofdstuk 2: Evolutionaire Algoritmen (EAn) waren een heel populaire optimalisatie-

methode voor een grote verscheidenheid aan toepassingen. Maar, ondanks de vele voor-

delen, is hun rekenintensiteit nog steeds een belemmering voor bepaalde praktische toe-

passingen waarbij sprake is van een rekenintensieve geschiktheidsfunctie. In dit hoofdstuk

nemen we als uitgangspunt de constatering dat survival-of-the-fittest in de natuur niet gaat

over de precieze mate van geschiktheid; meer van belang is een correcte volgorde in ge-

schiktheid van de concurrerende kandidaten. Door aldus deze natuurlijke tolerantie voor

onnauwkeurigheid te benutten, stellen we een vage korrel-gebaseerde aanpak voor om het

aantal noodzakelijke functie-aanroepen te reduceren (een korrel is een groep van verge-

lijkbare exemplaren uit de populatie). Deze aanpak is gebaseerd op een adaptieve, vage

geschiktheidsbenadering, die als belangrijkste doel heeft om een balans te vinden tussen

nauwkeurigheid en nuttigheid van het rekenwerk. Het adaptieve algoritme past de grootte

van de invloedssfeer van korrels aan, naargelang de rekenintensiteit en het bereikte niveau

van convergentie. Experimentele resultaten laten zien dat de voorgestelde aanpak de conver-

gentie naar optimale oplossingen versnelt, in vergelijking met andere, bekendere methoden.

Dit wijst op toepasbaarheid op andere complexe praktijkproblemen. De voorgestelde oplos-

sing heeft niet de nadelen van bestaande oplossingen voor geschikheidsbenadering, zoals

de noodzaak van rekenintensief, on-line trainen.

Hoofdstuk 3: De oplossing , voorgesteld in hoofdstuk 2, heeft een aantal afstemmings-

parameters die probleem-specifiek zijn. In de praktijk zijn een aantal rondes nodig om deze

parameters te bepalen. Dit hoofdstuk stelt een vage supervisor voor als automatische af-

155

156 Samenvatting

stemmingsstrategie, teneinde het expliciete instellen van deze parameters te vermijden. De

effectiviteit ervan is onderzocht met drie traditionele optimalisatie-benchmarks en 4 ver-

schillende keuzen voor de dimensie van de zoekruimte. Ook is het effect van het aantal kor-

rels op het convergentietempo onderzocht. De voorgestelde methode is vervolgens toegepast

op het probleem van de detectie van verborgen informatie in de vorm van een pseudoruis-

reeks met chipperioden van 63, 127 en 255 bits. In vergelijking met de standaardtoepassing

van EA laat de experimentele analyse zien dat de voorgestelde aanpak de mogelijkheid biedt

om de rekencomplexiteit van het detectieprobleem aanzienlijk te verminderen, zonder het

prestatieniveau aan te tasten. Het automatisch afstemmen door de vage supervisor heft de

noodzaak op van het bepalen van exacte parameterwaarden.

Hoofdstuk 4: In hoofdstuk 2 hebbeen we een oplossing gentroduceerd om de conver-

gentie te versnellen naar de optimale oplossing voor de situatie met n doelfunctie. In prak-

tijkproblemen is echter vaak sprake van 2 of meer doelfuncties. In dit hoofdstuk breiden

we de oplossing uit hoofdstuk 2 uit naar het geval met meer dan n doelfunctie. De voorge-

stelde aanpak wordt vergeleken met de standaard NSGA-II, met gebruik van Set Coverage,

Hypervolume en Generational Distance om prestaties te meten. Onze resultaten laten zien

dat onze aanpak een veelbelovend alternatief is voor het omgaan met optimalisatie voor

meerdere doelen wanneer het berekenen van de geschiktheidsfunctie rekenintensief is.

Hoofdstuk 5: Sommige evolutionaire rekentechnieken hebben voordelen boven andere

voor aspecten zoals het gemak van implementeren, het behouden van diversiteit van de po-

pulatie, efficintie, etc. Om efficintie te bevorderen, kunnen ze vereenvoudigd en/of gekruisd

worden. Er is ook een gestage toename in het aantal globale optimalisatie-algoritmen, waar-

bij elke algoritme zijn eigen unieke populatiedynamiek heeft. Verschillen in de populatie-

dynamiek karakteriseren de wijze waarop verkenning (= diversificeren van de populatie)

en benutting (= benutten wat al gevonden is) uitgevoerd worden en hoe een balans wordt

gevonden tussen conflicterende doelen. Deze algoritmen zijn ontwikkeld om tegemoet te

komen aan de behoefte aan snellere optimalisatie. Alhoewel bestaande metaheuristieken

geschikt zijn voor complexe optimalisatieproblemen, verslechterd hun convergentiegedrag

bij toenemende complexiteit. Metaheuristieken passen een zoekstrategie toe die een ba-

lans zoekt tussen verkennen en benutten in een algoritme-specifieke manier. Men kan vaak

constateren dat metaheuristieke algoritmen lokale minima vinden, soms zelfs van lage kwa-

liteit, wat betekent dat de gevonden balans niet geschikt is voor het op te lossen probleem.

Bijvoorbeeld kan een algoritme, door zijn zoek-afwijking, te veel nadruk leggen op het be-

nutten van gevonden oplossingen, waarbij weinig aandacht overblijft voor het verder explo-

reren van de zoekruimte als geheel. Wegens deze observatie, en genspireerd door de theorie

van de Grote Stuiterpartij (”Big Bounce Theory”: een oscillatorisch model voor het heelal),

hebben we een Gesimuleerd Stuiteren (Simulated Big Bounce: SBB) algoritme ontwikkeld

dat, naast benutting ook robuuste verkenning toepast, teneinde uit lokale minima te kunnen

ontsnappen. Dit hoofdstuk beschrijft het ontwerp van dit algoritme en toont de resultaten

van een serie vergelijkende experimenten waarin de prestaties van SBB op een verzame-

ling wiskundige benchmarks met hoge dimensie worden vergeleken met die van vijf andere

populaire heuristieken. De verkregen resultaten duiden erop dat het voorgestelde algoritme

(i) vergelijkbaar is met (en in sommige gevallen beter is dan) andere populatie-gebaseerde

optimalisatie-algoritmen, en (ii) het aantal berekeningen van de geschiktheidsfunctie dat

nodig is om even goede oplossingen te vinden, aanzienlijk vermindert . Alhoewel SBB

een aantal kenmerken gemeenschappelijk heeft met bestaande optimalisatiemethoden, zo-

Samenvatting 157

als deeltjeszwermoptimalisatie (Particle Swarm Optimization: PSO), bezit het daarnaast

ook unieke kenmerken. Deze komen voort uit diversiteit in kinetische energie van de deel-

tjes, en maken het mogelijk dat het algoritme kan ontsnappen uit lokale minima. Bovendien

bieden de experimentele resultaten aanwijzingen dat het kenmerk van robuuste verkenning,

wat SBB karakteriseert, de grond vormt voor de gemeten superieure prestaties.

Hoofdstuk 6: Bij het vergelijken van verschillende optimalisatiestrategien, hebben we

geconstateerd dat in de praktijk metaheuristieken te lijden hebben onder diverse vormen

van zoek-afwijkingen. Een goed begrip hiervan is direct relevant voor het selecteren van

de meest geschikte strategie. In dit hoofdstuk worden twee metrieken gentroduceerd: n

voor de middelpunt-zoekende afwijking (Center Seeking Bias: CSB) en n voor de zoekaf-

wijking door het gekozen initialisatiegebied (Initialization Region Bias: IRB). De eerste

is gebaseerd op ξ-center offset (verschuiving van het centrum), een alternatief voor center

offset, want deze laatste is niet geschikt voor de analyse van de middelpunt-zoekende af-

wijking, zoals wordt aangetoond. De metriek voor IRB wordt voorgesteld op grond van

regio-schaling (region scaling). De gentroduceerde metrieken worden gebruikt voor het

evalueren van de de afwijkingen van drie algoritmen die losgelaten worden op een testver-

zameling van optimalisatieproblemen die hun optimale oplossing hebben in, of dicht bij,

het centrum van de zoekruimte. Het meest opvallende resultaat in dit hoofdstuk is een

aanzienlijke CSB en IRB in het zwaartekrachts-zoekalgoritme (GSA: Gravitational Search

Algorithm). Dit hoofdstuk doet bovendien een voorstel voor de gedeeltelijke oplossing

van CSB en IRB in GSA door de introductie van een gespreide massa -versie van GSA:

mdGSA (md staat voor: mass dispersed). Dit bevordert de globale zoekmogelijkheden

van GSA. De prestaties hiervan zijn geverifieerd met dezelfde testverzameling en met een

parameter-identificatieprobleem voor een genen-regulerend netwerk. De resultaten van deze

experimenten tonen de mogelijkheden van mdGSA voor het het oplossen van realistische

optimalisatieproblemen uit de praktijk.

